首页> 外文期刊>Combustion and Flame >Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects
【24h】

Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects

机译:使用从非预混微混合建模训练的机器学习的化学减少:应用于用侧壁效果的合成气湍流氧火焰的DNS

获取原文
获取原文并翻译 | 示例
       

摘要

A chemistry reduction approach based on machine learning is proposed and applied to direct numerical simulation (DNS) of a turbulent non-premixed syngas oxy-flame interacting with a cooled wall. The training and the subsequent application of artificial neural networks (ANNs) rely on the processing of 'thermochemical vectors' composed of species mass fractions and temperature (ANN input), to predict the corresponding chemical sources (ANN output). The training of the ANN is performed aside from any flow simulation, using a turbulent non-adiabatic non-premixed micro-mixing based canonical problem with a reference detailed chemistry. Heat-loss effects are thus included in the ANN training. The performance of the ANN chemistry is then tested a-posteriori in a two-dimensional DNS against the detailed mechanism and a reduced mechanism specifically developed for the operating conditions considered. Then, threedimensional DNS are performed either with the ANN or the reduced chemistry for additional a-posteriori tests. The ANN reduced chemistry achieves good agreement with the Arrhenius-based detailed and reduced mechanisms, while being in terms of CPU cost 25 times faster than the detailed mechanism and 3 times faster than the reduced mechanism when coupled with DNS. The major potential of the method lies both in its data driven character and in the handling of the stiff chemical sources. The former allows for easy implementation in the context of automated generation of case-specific reduced chemistry. The latter avoids the Arrhenius rates calculation and also the direct integration of stiff chemistry, both leading to a significant CPU time reduction. (c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:提出了一种基于机器学习的化学还原方法,并应用于与冷却壁相互作用的湍流非预混合成气氧式火焰的直接数值模拟(DNS)。人工神经网络(ANNS)的培训和随后施加依赖于物质质量分数和温度(ANN输入)组成的“热化学载体”的处理,以预测相应的化学源(ANN输出)。除了任何流动模拟之外,使用湍流的非绝热未预混合的微混合基于参考详细化学来进行ANN的训练。因此,在ANN培训中包括热量损失效应。然后,将ANN化学的性能测试在二维DNS中的A-BOSTIORI,其针对详细的机制和用于考虑操作条件的特异性开发的减少机构。然后,使用ANN或降低的化学进行三维DNS以进行额外的A-BOSTIORI测试。尼唐化学与基于Arrhenius的详细和减少机制达成了良好的一致,同时在CPU的价格比详细机制快25倍,而在与DNS相结合时比减少机制快3倍。该方法的主要潜力在其数据驱动的特征和僵硬化学源的处理中。前者允许在自动生成情况的特定于案例的降低化学的背景下轻松实现。后者避免了Arrhenius率计算,也是僵硬化学的直接集成,这两者都导致显着的CPU时间减少。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

  • 来源
    《Combustion and Flame》 |2020年第10期|119-129|共11页
  • 作者单位

    Normandie Univ INSA Rouen CORIA CNRS F-76801 St Etienne Du Rouvray France;

    Normandie Univ INSA Rouen CORIA CNRS F-76801 St Etienne Du Rouvray France;

    Normandie Univ INSA Rouen CORIA CNRS F-76801 St Etienne Du Rouvray France;

    Normandie Univ INSA Rouen CORIA CNRS F-76801 St Etienne Du Rouvray France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial neural network; Chemistry reduction; Direct numerical simulation; Syngas;

    机译:人工神经网络;化学减少;直接数值模拟;合成气;
  • 入库时间 2022-08-18 21:16:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号