首页> 外文期刊>Combustion and Flame >Range of 'complete' instability of flat flames propagating downward in the acoustic field in combustion tube: Lewis number effect
【24h】

Range of 'complete' instability of flat flames propagating downward in the acoustic field in combustion tube: Lewis number effect

机译:“完全”在燃烧管中声场中向下传播的平坦火焰的不稳定性:Lewis数效应

获取原文
获取原文并翻译 | 示例
       

摘要

Downward propagating flames ignited at the open end of an open-closed tube exhibit thermo-acoustic instability due to interaction of combustion generated acoustic fluctuations with the flame front. At sufficiently high laminar burning velocity (S-L) two regimes of thermo-acoustic instability are observed, namely, primary instability (where initial cellular flame transitions to a vibrating flat flame) and a secondary instability (where vibrating flat flame transitions to vibrating turbulent flame due to parametric instability of flame front). On further increasing S-L to a particular value, "complete instability" of flat flames is observed meaning flat flame cannot be stabilized and initial cellular flame transitions directly to parametric instability. This particular S-L introduced in this work is termed "critical S-L". In past experimental works, stability of flat flames in the acoustic field had only been studied in terms of acoustic velocity amplitude and a critical acoustic velocity amplitude had been measured at the onset of parametric instability. The novelty of this work is that boundary of unconditional instability of flat flame (flat flame is unstable irrespective of acoustic velocity amplitude) is determined in terms of mixture conditions, e.g., S-L. Particularly for propagating flames, this critical S-L can be measured more easily and accurately than the critical acoustic velocity. This work presents the effect of Le (Lewis number) on critical S-L. Three different fuels, CH4, C2H4 and C3H8 are tested with two different dilution gases (N-2 and CO2) for equivalence ratio of 0.8 (lean) and 1.2 (rich). Twelve different Le ranging from 0.7 to 1.9 are generated through these mixture combinations. Generally, larger Le mixtures show higher critical S-L than lower Le mixtures for any fuel. Theoretical calculations are performed to predict critical S-L by studying instability of planar flame fronts in presence of acoustic forcing. Theoretical calculations successfully captured the effect of Le as predicted stability region of planar flame is narrower for lower Le than that for higher Le. However, accurate quantitative predictions of critical S-L couldn't be obtained from existing theory, particularly for non-unity Le. Hence, a correction (a function of Zeldovich number, and Le) to width of stability region is proposed to obtain better quantitative agreement for critical S-L between experiments and theory and performs significantly well. The correction factor acts to compensate for the inaccuracies in Markstein number obtained from an analytical relationship during calculation of stability region width. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:由于燃烧产生的声波与火焰前部的相互作用,在开孔管的开口端点燃的向下传播火焰表现出热声不稳定性。在足够高的层状燃烧速度(SL)中观察到的两个热声不稳定性的制度,即初级不稳定性(其中初始蜂窝火焰过渡到振动平坦的火焰)和次级不稳定性(其中振动平坦的火焰过渡到振动湍流火焰到期振动湍流火焰对火焰前锋的参数不稳定)。在进一步增加S-L对特定值的情况下,观察到平坦火焰的“完全不稳定性”意义平坦的火焰不能稳定,并且初始蜂窝火焰过渡直接转向参数不稳定。本作品中引入的这种特殊S-L被称为“关键S-L”。在过去的实验工作中,在声速度幅度方面仅研究了声场中的平坦火焰的稳定性,并且在参数不稳定性的开始时已经测量了临界声速度幅度。这项工作的新颖性是在混合条件下,例如S-L确定平坦火焰的无条件不稳定性的边界(无关声速度幅度)。特别是对于传播火焰,可以比临界声速度更容易且准确地测量该关键S-L.这项工作介绍了LE(刘易斯号码)对关键S-L的影响。用两种不同的稀释气体(N-2和CO 2)测试三种不同的燃料,CH4,C2H4和C3H8,用于等效比为0.8(瘦)和1.2(富集)。通过这些混合物组合产生12个不同的Le范围为0.7至1.9。通常,较大的LE混合物显示出高于较低的LE混合物的临界S-L,用于任何燃料。通过在声学强迫存在下研究平面火焰前线的稳定性来执行理论计算以预测关键S-L.理论计算成功地捕获了LE的效果,因为较高的LE的平面火焰的预测稳定性区域比较较高的LE。然而,无法从现有理论中获得临界S-L的准确定量预测,特别是对于非团结le。因此,提出了一种校正(Zeldovich号码和Le)到稳定区域的宽度的校正,以获得实验和理论之间的关键S-L的更好的定量协议,并且显着良好地执行。校正因子用于补偿在计算稳定区域宽度的分析关系中获得的Markstein号码中的不准确性。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号