首页> 外文期刊>Combustion and Flame >Numerical investigation of strained extinction at engine-relevant pressures: Pressure dependence and sensitivity to chemical and physical parameters for methane-based flames
【24h】

Numerical investigation of strained extinction at engine-relevant pressures: Pressure dependence and sensitivity to chemical and physical parameters for methane-based flames

机译:发动机相关压力紧张灭绝的数值研究:压力依赖性和对甲烷的火焰的化学和物理参数的敏感性

获取原文
获取原文并翻译 | 示例
       

摘要

Resistance to extinction by stretch and and laminar flame speed are important properties of any combustible mixture. Recent work has shown that extinction by stretch controls the overall structure of several important types of methane-based turbulent flames. The parameter used to quantify this phenomena, Extinction Strain Rate (ESR), is numerically studied here for methane-based flames across a range of pressures relevant to gas turbines and internal combustion engines, 1-40 atm. The pressure trends are compared with those of laminar flame speed which is historically better studied. Current kinetic models agree that ESR of lean flames is a non-monotonic function of pressure and that ESR of rich flames increases significantly with pressure, but are found to differ significantly in their numerical predictions of ESR, particularly at higher pressures. To better identify the source of model prediction differences and what governs the overall accuracy of the ESR predictions, various model sensitivity analyses were conducted. Pressure-dependent kinetics are shown to be vital to determining ESR pressure trends as are molecular collision efficiencies. Yet, reactions sensitivities for ESR largely mirror those for laminar flame speed calculations. Sensitivity to the transport parameter, Lennard Jones diameter, significantly exceeds reaction sensitivities for the fuel, oxidizer and bath gas. Thermodynamic parameter ESR sensitivities vary widely with pressure, but at least for enthalpy, appear insignificant when uncertainties are considered. This study informs and motivates further efforts to understand the phenomena of flame extinction by stretch at elevated pressures. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:通过拉伸和层状火焰速度对消光的抵抗力是任何可燃混合物的重要性质。最近的工作表明,通过拉伸灭绝控制了几种重要类型的甲烷的湍流火焰的整体结构。用于量化该现象的参数消失应变速率(ESR),用于跨越与燃气涡轮机和内燃机相关的一系列压力的基于甲烷的火焰进行数量地研究了1-40atm。将压力趋势与层流火焰速度进行比较,这些火焰速度历史上更好地研究。当前的动态模型一致认为,瘦火焰的ESR是压力的非单调功能,并且富含火焰的ESR随着压力而显着增加,但在其对ESR的数值预测中被发现有显着不同,特别是在更高的压力下显着不同。为了更好地识别模型预测差异以及管理ESR预测的整体准确性的源,进行了各种模型敏感性分析。压力依赖性动力学显示为确定ESR压力趋势至关重要的是分子碰撞效率至关重要。然而,ESR的反应敏感性在很大程度上镜像层流燃烧速度计算。对运输参数的敏感性,Lennard Jones直径,显着超过了燃料,氧化剂和浴气体的反应敏感性。热力学参数ESR敏感性随着压力而变化很大,但至少对于焓,当考虑不确定性时显得微不足道。本研究通知和激励进一步努力通过在升高的压力下伸展来了解火焰灭绝的现象。 (c)2019燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号