首页> 外文期刊>Combustion and Flame >Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition
【24h】

Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition

机译:乙烯基乙炔添加的多环芳烃生长的计算研究

获取原文
获取原文并翻译 | 示例
       

摘要

The growth of polycyclic aromatic hydrocarbons (PAH) can proceed via multiple chemical mechanisms. The mechanism of naphthyl radical and vinylacetylene (C4H4) addition reaction has been systematically investigated in this computational study. A combination of DFT/B3LYP/6-311+G(d,p), CCSD/6-311+G(d,p) and CBS-QB3 methods were performed to calculate the potential energy surfaces. It revealed that the products, including phenanthrene, anthracene, a PAH with a five-membered ring structure, and PAH with a C4H3 radical substitution, can be formed in A(2)-1 (1-naphthyl)+C4H4 and A(2)-2 (2-naphthyl) +C4H4 reaction networks. The reaction rate constants at 0.1-100 atm were evaluated by RRKM theory by solving the master equation in the temperature range of 800-2500 K, which showed that the rate constants of reactions A(2)-1 (A(2)-2)+C4H4 - product+H are highly temperature-dependent but nearly pressure-independent. The distribution of products was investigated in a 0-D batch reactor, wherein the initial reactant concentrations were taken from experimental measurements. The results showed that adduct intermediates were the main products at low temperature (T 1000 K), and the phenanthrene and PAH with C4H3 radical substitution became the dominant products at temperatures where PAHs and soot form in flames (T 1000 K). It was observed that a significant amount of phenanthrene is formed from PAH with a C4H3 radical substitution with the assistance of H atom. Reaction pathway sensitivity analysis for the PAH radical+C4H4 reaction system was performed and showed that the new benzene rings are more likely to be generated near the zig-zag edge surface site instead of the free edge. For the development of a PAH mechanism, the analogous treatment of rate constants for larger PAH radical +C4H4 reaction system are discussed. The formation rate of naphthalene from the reaction of phenyl+C4H4 was found to be very close to that of phenanthrene from the reaction of naphthyl+C4H4, suggesting that the analogous treatment of the rates is reasonable in PAH mechanisms. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:多环芳烃(PAH)的生长可以通过多种化学机制进行。在该计算研究中系统地研究了萘基自由基和乙烯基乙炔(C4H4)加成反应的机制。进行DFT / B3LYP / 6-311 + G(D,P),CCSD / 6-311 + G(D,P)和CBS-QB3方法的组合以计算潜在的能量表面。揭示了产物,包括菲苯乙烯,蒽,具有五元环结构的PAH和具有C4H3自由基取代的PAH,可以形成为(2)-1(1-萘基)+ C4H4和A(2 )-2(2-萘基)+ C4H4反应网络。通过求解800-2500 k温度范围的母型方程,通过RRKM理论评估0.1-100atm的反应速率常数,这表明反应的速率常数a(2)-1(a(2)-2 )+ C4H4 - >产品+ H是高温依赖性但几乎压力无关。研究了产物的分布在0-D批料反应器中,其中初始反应物浓度从实验测量中取出。结果表明,加合物中间体是低温(T <1000K)的主要产物,菲和PAH与C4H3自由基取代的菲在PAHS和烟尘中的温度下的主导产品(T> 1000K)。观察到,在H原子的辅助下,通过C4H3自由基取代的PAH形成大量的菲苯。对PAH基团+ C4H4反应体系的反应途径敏感性分析,并显示出新的苯环更容易在锯齿形边缘表面部位附近而不是自由边缘产生。为了开发PAH机制,讨论了较大PAH基团+ C4H4反应系统的速率常数的类似处理。从萘基+ C4H4的反应中发现来自苯基+ C4H4反应的萘的形成速率从萘基+ C4H4的反应非常接近菲苯乙烯的速率。表明该速率的类似治疗在PAH机制中是合理的。 (c)2019燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

  • 来源
    《Combustion and Flame》 |2019年第4期|276-291|共16页
  • 作者单位

    King Abdullah Univ Sci & Technol Clean Combust Res Ctr Thuwal 239556900 Saudi Arabia;

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn Minist Educ Shanghai 200240 Peoples R China;

    King Abdullah Univ Sci & Technol Clean Combust Res Ctr Thuwal 239556900 Saudi Arabia;

    King Abdullah Univ Sci & Technol Clean Combust Res Ctr Thuwal 239556900 Saudi Arabia;

    Shanghai Jiao Tong Univ Sch Mech Engn Key Lab Power Machinery & Engn Minist Educ Shanghai 200240 Peoples R China;

    King Abdullah Univ Sci & Technol Clean Combust Res Ctr Thuwal 239556900 Saudi Arabia;

    King Abdullah Univ Sci & Technol Clean Combust Res Ctr Thuwal 239556900 Saudi Arabia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PAHs; Soot; Nucleation; Mechanism; Kinetics;

    机译:PAHS;烟灰;成核;机制;动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号