...
首页> 外文期刊>Combustion and Flame >Exhaust CO emissions of a laminar premixed propane-air flame interacting with cold gas jets
【24h】

Exhaust CO emissions of a laminar premixed propane-air flame interacting with cold gas jets

机译:层流预混丙烷-空气火焰与冷气体喷流相互作用的CO排放

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates a laminar premixed flame interacting with cold gas jets, at different cooling jet mass flow fractions ((m) over dot(jet)*) and diluent types, namely air and N-2. A novel burner and wall configuration is used to experimentally induce flame-cooling-air interaction (FCAl). Flame chemiluminescence imaging, exhaust temperature (T-exh) and exhaust CO emissions ([CO](exh)) measurements are conducted to characterise the flame shape and [CO](exh) response to the cooling jets. Flame imaging reveals that the cooling jets greatly affect the flame shape. Measurements of [CO](exh) demonstrate a direct correlation with T-exh, as decreasing T-exh is observed to occur with decreasing [CO](exh). Additionally, the air diluent case shows consistently lower [CO](exh) values, relative to the N-2 diluent case.Using a novel modelling approach, the cooling jets are simulated using one-dimensional (1D) fully resolved simulations (FRS). The effect of jet dilution, jet cooling and exhaust gas cooling are independently and jointly investigated in these simulations. The FRS results support the experimentally observed behaviour, and show that exhaust gas cooling and exhaust gas oxygenation produce decreased CO concentrations. Using a chemical reactor network (CRN), the jet mixing process is modelled by a perfectly stirred reactor (PSR), while the exhaust gas cooling process is modelled by a plug flow reactor (PFR). The CRN modelling shows that the jet mass flow rates dictated by (m) over dot(jet)*, the dilution time (t(dil)) assumed for cooling jet mixing, and the exhaust gas cooling residence time (t(cool)), play an important role in determining the [CO](exh). An equilibrium analysis illustrates that the relationship between [CO](exh), T-exh and exhaust O-2, is due to the thermodynamically favoured equilibrium states. Timescale analyses demonstrate that appropriate modelling of jet mixing, and accounting for the rate of exhaust gas cooling, are important for estimations of [CO](exh). (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:这项研究研究了层流预混火焰与冷气体射流的相互作用,在不同的冷却射流质量流量分数((m)超过点(射流)*)和稀释剂类型(即空气和N-2)下。一种新颖的燃烧器和壁构造用于实验性地引发火焰-冷却空气相互作用(FCAl)。进行火焰化学发光成像,排气温度(T-exh)和排气CO排放量([CO](exh))测量,以表征火焰形状和对冷却射流的[CO](exh)响应。火焰成像显示冷却喷嘴极大地影响了火焰的形状。 [CO](exh)的测量表明与T-exh直接相关,因为观察到T-exh的降低与[CO](exh)的降低有关。此外,相对于N-2稀释剂情况,空气稀释剂情况始终显示出较低的[CO](exh)值。采用新颖的建模方法,使用一维(1D)完全解析模拟(FRS)对冷却喷嘴进行仿真。在这些模拟中,将独立并共同研究射流稀释,射流冷却和废气冷却的影响。 FRS结果支持实验观察到的行为,并表明废气冷却和废气氧合产生降低的CO浓度。使用化学反应器网络(CRN),通过完全搅拌反应器(PSR)对射流混合过程进行建模,而通过活塞流反应器(PFR)对排气冷却过程进行建模。 CRN模型显示,喷射质量流量由(m)表示,取决于点(jet)*,假设稀释时间(t(dil))用于冷却喷射混合,并且排气冷却停留时间(t(cool))在确定[CO](exh)中起重要作用。平衡分析表明,[CO](exh),T-exh和排气O-2之间的关系是由于热力学上有利的平衡态引起的。时标分析表明,对射流混合进行适当的建模并考虑废气冷却的速率,对于[CO](exh)的估算非常重要。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号