...
首页> 外文期刊>Combustion and Flame >Analysis of kinetic models for rich to ultra-rich premixed CH_4/air weak flames using a micro flow reactor with a controlled temperature profile
【24h】

Analysis of kinetic models for rich to ultra-rich premixed CH_4/air weak flames using a micro flow reactor with a controlled temperature profile

机译:使用可控温度曲线的微流反应器分析浓到超浓CH_4 /空气弱火焰的动力学模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Aromatic formation in methane combustion is still not well understood. The first step to build kinetic models for aromatic formation is to understand fuel-rich oxidation and formation of aromatic precursors like acetylene and ethylene in varied temperature and equivalence ratio conditions. This understanding is also useful to optimize partial oxidation of methane in fuel-rich conditions. With this view, the current work presents investigation of fuel-rich but non-sooting premixed methane/air flames for equivalence ratios between 1.7 and 6.0 using a micro flow reactor with a prescribed temperature gradient from 300 K up to maximum temperature of 1200K. Weak flames which represent the ignition behavior of fuel were studied. Concentrations of major stable species, CH4, CO, CO2, C2H6, C2H4 and C2H2 were measured using a gas chromatograph with a thermal conductivity detector (GC-TCD). Computations with 1-D reactive flow model using existing kinetic models, GRI 3.0, SD 2016 (San Diego mech), KAUST (USC II) and ARAMCO 1.3 were performed. Change in weak flame structure with change in equivalence ratio was studied. KAUST (USC II) predicted the weak flame positions very well at both equivalence ratios of 2.0 and 6.0, but species mole fractions were not so well predicted. It was found that models with higher rates of CH3+O-2 double left right arrow CH2O+OH (SD 2016) and CH3 +HO2 double left right arrow CH3O+OH (GRI 3.0) predicted upstream weak flame positions and thus higher reactivity. However, SD 2016 and GRI 3.0 predicted species mole fractions better, particularly at higher equivalence ratios. All the mechanisms used in the current work underpredicted the mole fractions of C2H2 by factors of four to five at all equivalence ratios addressed here. Reaction path analysis showed significant differences among kinetic models. Particularly, consumption pathways of CH3 vary greatly among kinetic models leading to different reactivity. Flexibility and applicability of existing mechanisms to predict the current fuel-rich to ultra-fuel-rich CH4 combustion was discussed. HO2 radicals, which are generally important at high pressures are found to be significant in current fuel-rich conditions. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:甲烷燃烧中的芳族形成仍未得到很好的理解。建立芳香族形成动力学模型的第一步是了解在各种温度和当量比条件下富含燃料的氧化以及芳香族前体(如乙炔和乙烯)的形成。这种理解对于在富燃料条件下优化甲烷的部分氧化也很有用。以此观点,当前工作提出了使用规定温度梯度从300 K到最高温度为1200K的微流反应器,对当量比为1.7至6.0的富含燃料但不发烟的甲烷/空气混合火焰进行研究。研究了代表燃料着火行为的弱火焰。使用带有热导检测器(GC-TCD)的气相色谱仪测量主要稳定物质CH4,CO,CO2,C2H6,C2H4和C2H2的浓度。使用现有动力学模型,GRI 3.0,SD 2016(San Diego mech),KAUST(USC II)和ARAMCO 1.3使用一维反应流模型进行了计算。研究了当量比变化时弱火焰结构的变化。 KAUST(USC II)在两种当量比为2.0和6.0时都很好地预测了弱火焰的位置,但是对物种摩尔分数的预测却不太理想。发现具有较高CH3 + O-2双左向右箭头CH2O + OH(SD 2016)和CH3 + HO2双左向右箭头CH3O + OH(GRI 3.0)的模型预测上游火焰位置较弱,因此反应性较高。但是,SD 2016和GRI 3.0更好地预测了物种的摩尔分数,尤其是在较高的当量比下。在本文中解决的所有当量比下,当前工作中使用的所有机制都低估了C2H2的摩尔分数为4到5的倍数。反应路径分析显示动力学模型之间存在显着差异。特别地,CH 3的消耗途径在动力学模型之间变化很大,从而导致不同的反应性。讨论了现有机制的灵活性和适用性,以预测当前的富燃料到超富燃料的CH4燃烧。人们发现,在当前的富燃料条件下,HO2自由基在高压下通常很重要。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号