首页> 外文期刊>Combustion and Flame >Structure of strongly turbulent premixed n-dodecane-air flames: Direct numerical simulations and chemical explosive mode analysis
【24h】

Structure of strongly turbulent premixed n-dodecane-air flames: Direct numerical simulations and chemical explosive mode analysis

机译:强湍流预混正十二烷空气火焰的结构:直接数值模拟和化学爆炸模式分析

获取原文
获取原文并翻译 | 示例
           

摘要

Structure of strongly turbulent premixed n-dodecane/air flames with high Karlovitz numbers (Ka) is studied based on three-dimensional (3D) direct numerical simulation (DNS) datasets. Heat release and fuel consumption rates in these flames are observed to be enhanced compared to what can be conventionally described as increases in flame surface area. To explain the cause for the burning rate enhancement, temperature and species mass fractions are first investigated to reveal the overall flame structure. The chemical explosive mode analysis (CEMA) is then employed to identify local combustion modes, including local assisted ignition, auto-ignition, and extinction, each of which is found to play a role in the overall burning rates. The spatial distribution of the local modes is found to be drastically different from that in comparable laminar flames where the local extinction mode is mostly absent. For the high-Ka cases (Ka = 10(3) and 10(4)), the extinction mode is shown to be comparable to or more important than the auto-ignition mode for heat release and fuel consumption rates. In contrast, the auto-ignition mode plays a more important role in heat release than the extinction mode in laminar and the relatively low-Ka flames (Ka = 10(2)). In addition, two types of mixture pockets are identified by CEMA: pockets of reactants in bulk products and pockets of hot products in bulk reactants. The dynamics of these pockets are strongly affected by the local modes of the spatially adjacent mixtures. While the pockets of reactants in bulk products are almost always consumed by auto-ignition and/or inward flame propagation, the pockets of products in bulk reactants may either grow themselves due to outward flame propagation or contract volumetrically due to local extinction. In contrast to the conventional understanding, local extinction can promote the overall burning process, as it enables mixing of the radicals and sensible energy from the product pockets into the surrounding reactants, thus facilitating their ignition. Clearly, such effects must be considered in order to closely model these flames. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:基于三维(3D)直接数值模拟(DNS)数据集,研究了具有高Karlovitz数(Ka)的强湍流预混合正十二烷/空气火焰的结构。与传统上可以描述为火焰表面积增加的情况相比,这些火焰中的热量释放和燃料消耗率得到了提高。为了解释燃烧速率提高的原因,首先研究了温度和物质质量分数,以揭示整体火焰结构。然后,使用化学爆炸模式分析(CEMA)来识别局部燃烧模式,包括局部辅助点火,自燃和熄灭,发现每种燃烧模式都对总体燃烧速率起作用。发现局部模式的空间分布与在可比的层流火焰中几乎没有局部熄灭模式的空间分布大不相同。对于高Ka情况(Ka = 10(3)和10(4)),消光模式显示出与自燃模式相当或比自燃模式更重要,以释放热量和燃料消耗率。相比之下,在层流和相对较低的Ka火焰(Ka = 10(2))中,自燃模式在放热中比熄灭模式更重要。另外,CEMA识别出两种类型的混合物袋:散装产品中的反应物袋和散装反应物中的热产品袋。这些袋的动力学受到空间相邻混合物的局部模式的强烈影响。尽管散装产品中的反应物袋几乎总是被自燃和/或向内火焰传播所消耗,但散装反应物中的产品袋可能因向外火焰传播而自身生长,或者由于局部熄灭而体积收缩。与传统的理解相反,局部熄灭可以促进整个燃烧过程,因为它可以将自由基和显性能量从产物袋中混合到周围的反应物中,从而促进其燃烧。显然,必须仔细考虑这些影响,以便对这些火焰进行精确建模。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号