首页> 外文期刊>Combustion and Flame >Predicting octane number from microscale flame dynamics
【24h】

Predicting octane number from microscale flame dynamics

机译:从微尺度火焰动力学预测辛烷值

获取原文
获取原文并翻译 | 示例
       

摘要

The standard method for measuring the octane number of fuels requires large sample volumes (similar to 1L) and access to a Cooperative Fuel Research (CFR) engine. This method reliably quantifies the knock resistance of fuels in spark ignition engines, however the large sample volume requirement prevents testing of new experimental fuels (often produced in quantities of just similar to 1 mL), and the large equipment size impedes mobile, decentralized testing of remote fuel supplies. When direct measurements of octane number are impractical, other methods are needed. Micro flow reactors have shown promise in measuring ignition characteristics that are sensitive to octane number, and they are compact and operate on small volumes (similar to 1 mL). This study uses simulations to demonstrate that measurements of the unsteady flame dynamics in a micro flow reactor can provide valuable data for accurate octane number predictions. Simulations of the flow reactor are used to obtain ignition characteristics for over 200 ethanol-toluene primary reference fuels (ETPRF) and 21 biofuel blends. A feed forward neural network is trained using the micro flow reactor ignition characteristics, fuel properties, and known research octane number (RON) and motor octane number (MON) for the ETPRF fuels. The neural network is able to predict the RON and MON of the biofuel blends to within 2 octane number on average. Prediction results are compared to other methods available in the literature. Additional neural network models are trained that show improved prediction accuracy as additional fuel training data becomes available. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:测量燃料辛烷值的标准方法需要大样本量(类似于1L),并且需要使用合作燃料研究(CFR)发动机。这种方法可以可靠地量化火花点火发动机中燃料的抗爆震性,但是由于样品量大,因此无法测试新的实验燃料(通常以接近1 mL的量进行生产),而大型设备又阻碍了对燃料的移动式分散测试。远程燃油供应。如果无法直接测量辛烷值,则需要其他方法。微流反应器在测量对辛烷值敏感的点火特性方面显示出了希望,它们紧凑且体积小(约1 mL)。这项研究使用模拟来证明微流反应器中不稳定火焰动力学的测量可以为准确的辛烷值预测提供有价值的数据。流动反应器的模拟用于获得200多种乙醇-甲苯主要参考燃料(ETPRF)和21种生物燃料混合物的点火特性。使用微流反应器的点火特性,燃料特性以及ETPRF燃料的已知研究辛烷值(RON)和电机辛烷值(MON)来训练前馈神经网络。神经网络能够预测生物燃料混合物的RON和MON平均在2辛烷值以内。将预测结果与文献中可用的其他方法进行比较。训练了附加的神经网络模型,这些模型显示出随着附加的燃料训练数据可用而提高的预测准确性。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号