...
首页> 外文期刊>Combustion and Flame >A modelling study of acetylene oxidation and pyrolysis
【24h】

A modelling study of acetylene oxidation and pyrolysis

机译:乙炔氧化和热解的模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study initiates the gradual upgrade of the DLR reaction database The upgrade plan has two main steps: an optimisation of the C-1-C-4 oxidation chemistry and a revision of the polyaromatic hydrocarbon (PAH) formation sub-mechanism based thereupon. The present paper reports the main principles applied to model improvements and results obtained for the acetylene (C2H2) oxidation sub-mechanisms. The principle acetylene oxidation reactions have been revised as well as the detailed chemistry of important intermediates, i.e. methylene, ethynyl, vinylperoxy radical and also diacetylene, vinylacetylene and higher diacetylenes, important for PAH formation. The uncertainty intervals of the studied reactions were statistically evaluated, providing general bounds for the performed modifications to reaction rate coefficients. The first stage of the presented update was performed through revision of the thermochemical data and model optimisation on ignition delay data and laminar flame speed data, since they exhibit lower uncertainty in comparison to species profile data. The final model optimisation was obtained through simulations of concentration profiles measured in shock tubes and laminar flames for improvement of the reaction paths and rate coefficients related to acetylene pyrolysis and PAH precursor formation. Approximately 500 data points were analysed. The updated reaction mechanism predicts all simulated experimental data, also not included in the optimisation loop data prom plug flow and jet-stirred reactors, either with good or satisfactory agreement. It was found that the vinylperoxy radical formation and consumption dictate the reaction progress at low temperatures. The performed study clearly determined that acetylene combustion proceeds through the strongly coupled reaction paths of fuel oxidation and PAH precursor formation; the same species are involved in these parallel processes. Therefore, the self-consistent reaction model for acetylene combustion could be obtained only by an optimisation performed on the experimental dataset encompassing both processes. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:这项研究启动了DLR反应数据库的逐步升级。升级计划有两个主要步骤:优化C-1-C-4氧化化学反应,并据此修订聚芳烃(PAH)形成子机理。本论文报告了用于模型改进的主要原理和获得的乙炔(C2H2)氧化子机理的结果。乙炔氧化反应的原理以及重要中间体(即亚甲基,乙炔基,乙烯基过氧自由基以及二乙炔,乙烯基乙炔和高级二乙炔)的详细化学方法均已修订,这对PAH的形成至关重要。对研究反应的不确定性区间进行统计学评估,为进行反应速率系数的修改提供一般界限。本次更新的第一阶段是通过热化学数据的修改以及点火延迟数据和层流火焰速度数据的模型优化进行的,因为与物种分布数据相比,它们具有较低的不确定性。通过模拟在激波管和层流火焰中测得的浓度分布图来改善模型的最终路径,以改善与乙炔热解和PAH前体形成有关的反应路径和速率系数。分析了大约500个数据点。更新后的反应机理可以预测所有模拟实验数据,这些数据也没有包括在优化循环数据舞会塞流和射流搅拌反应器中,具有良好或令人满意的一致性。发现乙烯基过氧自由基的形成和消耗决定了低温下的反应进程。进行的研究清楚地确定,乙炔燃烧是通过燃料氧化和PAH前体形成的强耦合反应路径进行的。这些并行过程涉及相同的物种。因此,只有通过对包含两个过程的实验数据集进行优化,才能获得乙炔燃烧的自洽反应模型。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号