首页> 外文期刊>Combustion and Flame >Detailed kinetic modeling of dimethoxymethane. Part Ⅱ: Experimental and theoretical study of the kinetics and reaction mechanism
【24h】

Detailed kinetic modeling of dimethoxymethane. Part Ⅱ: Experimental and theoretical study of the kinetics and reaction mechanism

机译:二甲氧基甲烷的详细动力学建模。第二部分:动力学和反应机理的实验和理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this study (Part II), the oxidation of dimethoxymethane (DMM) is investigated and a detailed chemical reaction model developed for a comprehensive description of both high- and low-temperature oxidation processes. The sub-mechanism of DMM is implemented using AramcoMech2.0 as the base mechanism. Rate coefficients are based on analogies with those for dimethyl ether, diethyl ether, and n-pentane oxidation. Furthermore, theoretical studies from recent works are also included in the present model and new calculations for the dissociation kinetics of (Q) over dotOOH radicals have been carried out at the CCSD(T)/CBS(aug-cc-pVXZ; X=D, T) // B2PLYP-D3/6-311 + + G(d,p) level of theory. For validation, new ignition delay time experiments have been performed in a shock tube (ST), a rapid compression machine (RCM), and in a laminar flow reactor covering a wide range of conditions (p = 1-40 bar, T= 590-1215 K, phi = 1). In addition, the kinetic model is validated against laminar burning velocities, jet-stirred reactor, plug flow reactor and further ST and RCM experimental datasets from the literature. Pathway and sensitivity analyses were used to identify critical reaction pathways in the DMM oxidation mechanism. These show that the reactivity of DMM at intermediate temperatures is controlled by the branching between pathways initiated on the primary or secondary fuel radical. While primary fuel radicals eventually lead to chain branching, secondary fuel radical consumption is controlled by fast beta-scission over a wide range of temperatures, which inhibits reactivity. (C) 2018 Published by Elsevier Inc. on behalf of The Combustion Institute.
机译:在本研究(第二部分)中,对二甲氧基甲烷(DMM)的氧化进行了研究,并开发了详细的化学反应模型以全面描述高温和低温氧化过程。 DMM的子机制是使用AramcoMech2.0作为基本机制来实现的。速率系数基于与二甲醚,二乙醚和正戊烷氧化的相似性。此外,最新模型的理论研究也包括在本模型中,并且在CCSD(T)/ CBS(aug-cc-pVXZ; X = D处)对(Q)在dotOOH自由基上的解离动力学进行了新的计算。 ,T)// B2PLYP-D3 / 6-311 + + G(d,p)的理论水平。为了验证,已经在冲击管(ST),快速压缩机(RCM)和层流反应器中进行了新的点火延迟时间实验,该实验涵盖了广泛的条件(p = 1-40 bar,T = 590 -1215 K,phi = 1)。此外,动力学模型针对层流燃烧速度,射流搅拌反应器,活塞流反应器以及来自文献的其他ST和RCM实验数据集进行了验证。途径和敏感性分析用于确定DMM氧化机理中的关键反应途径。这些表明,DMM在中间温度下的反应性是由一级或二级燃料自由基上引发的路径之间的分支控制的。尽管主要燃料自由基最终会导致链支化,但辅助燃料自由基的消耗却受到在广泛温度范围内快速β断裂的控制,从而抑制了反应性。 (C)2018年由Elsevier Inc.代表燃烧研究所出版。

著录项

  • 来源
    《Combustion and Flame》 |2019年第7期|522-533|共12页
  • 作者单位

    Rhein Westfal TH Aachen, Phys Chem Fundamentals Combust, D-52056 Aachen, Germany;

    Rhein Westfal TH Aachen, Chair Tech Thermodynam, D-52056 Aachen, Germany|Univ Helsinki, Dept Chem, Lab Phys Chem, AI Virtasen Aukio 1, FI-00560 Helsinki, Finland;

    Rhein Westfal TH Aachen, Inst Combust Technol, D-52056 Aachen, Germany;

    Rhein Westfal TH Aachen, Chair Tech Thermodynam, D-52056 Aachen, Germany;

    Rhein Westfal TH Aachen, Chair Tech Thermodynam, D-52056 Aachen, Germany;

    Natl Univ Ireland Galway, Combust Chem Ctr, Sch Chem, Galway H91 TK33, Ireland|Natl Univ Ireland Galway, Ryan Inst, Galway H91 TK33, Ireland;

    Rhein Westfal TH Aachen, Inst Combust Technol, D-52056 Aachen, Germany;

    Rhein Westfal TH Aachen, Chair Tech Thermodynam, D-52056 Aachen, Germany;

    Natl Univ Ireland Galway, Combust Chem Ctr, Sch Chem, Galway H91 TK33, Ireland|Natl Univ Ireland Galway, Ryan Inst, Galway H91 TK33, Ireland;

    Rhein Westfal TH Aachen, Phys Chem Fundamentals Combust, D-52056 Aachen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dimethoxymethane (DMM, OME1); Ignition delay time; Chemical kinetic model; Thermochemistry;

    机译:二甲氧基甲烷(DMM;OME1);点火延迟时间;化学动力学模型;热化学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号