首页> 外文期刊>Combustion and Flame >Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical
【24h】

Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical

机译:烷烃燃烧第二种氧化机理的动力学中的氢转移异构化。氢过氧戊基过氧OOQOOH自由基的反应

获取原文
获取原文并翻译 | 示例
           

摘要

Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular alpha-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298-1500 K, and the pressure range is 0.01-100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:氢过氧烷基过氧物质是运输燃料自燃期间产生的重要中间体。在燃烧中,氢过氧烷基过氧的去向对于先进内燃机的性能,特别是对自燃而言很重要。氢过氧烷基过氧的关键命运是1,5 H-移,有关动力学数据在实验上是不可用的。在目前的工作中,我们研究1-氢过氧戊烷-3-基)二氧化戊基(CH3CH2CH(OO)CH2CH2OOH)作为模型化合物,以阐明氢过氧烷基过氧物质1,5 H-移位的动力学,特别是α-H异构化和替代竞争途径。通过结合电子结构计算,我们可以确定以前丢失的热化学数据,并通过多径变迁过渡态理论(MP-VTST),多维隧穿(MT)近似,多结构不谐和和扭转势不谐和,获得了更多比常规单结构谐波过渡态理论(TST)可以计算出的速率常数更准确,并且比目前在燃烧建模中根据经验估算出的速率常数更准确。阐明了各种因素在确定比率中的作用。使用系统特定的量子RRK理论计算这些竞争性反应的压力相关速率常数。计算出的温度范围是298-1500 K,压力范围是0.01-100 atm。在对碳氢化合物和代用燃料的着火特性的详细理解和预测中,这项工作确定的准确的热力学和动力学数据是必不可少的。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第11期|88-101|共14页
  • 作者单位

    Henan Univ Sci & Technol, Energy & Power Engn Inst, Luoyang 471003, Henan, Peoples R China|Univ Minnesota, Dept Chem, Chem Theory Ctr, 207 Pleasant St SE, Minneapolis, MN 55455 USA|Univ Minnesota, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA;

    Univ Minnesota, Dept Chem, Chem Theory Ctr, 207 Pleasant St SE, Minneapolis, MN 55455 USA|Univ Minnesota, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA;

    King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia;

    Henan Univ Sci & Technol, Energy & Power Engn Inst, Luoyang 471003, Henan, Peoples R China;

    Univ Minnesota, Dept Chem, Chem Theory Ctr, 207 Pleasant St SE, Minneapolis, MN 55455 USA|Univ Minnesota, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydroperoxyalkylperoxy; Autoignition; Quantum chemical calculation; Kinetics;

    机译:氢过氧烷基过氧自燃量子化学计算动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号