首页> 外文期刊>Cold regions science and technology >Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution
【24h】

Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

机译:直流(DC)电阻率和感应极化(IP)监测高时间分辨率下的有源层动力学

获取原文
获取原文并翻译 | 示例
       

摘要

With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP) measurements at high temporal resolution and at a relatively large scale at a heath tundra site on Disko Island on the west coast of Greenland (69 degrees N). At the field site, the active layer is disconnected from the deeper permafrost, due to isothermal springs in the region. Borehole sediment characteristics and subsurface temperatures supplemented the DC-IF measurements. A time-lapse DC-IP monitoring system has been acquiring at least six datasets per day on a 42-electrode profile with 0.5 m electrode spacing since July 2013. Remote control of the data acquisition system enables interactive adaptation of the measurement schedule, which is critically important to acquire data in the winter months, where extremely high contact resistances increase the demands on the resistivity meter. Data acquired during the freezing period of October 2013 to February 2014 clearly image the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions of the full-decay IF data indicate a decrease of normalized chargeability with freezing of the ground, which is the result of a decrease in the total unfrozen water and of the higher ion concentration in the pore-water. We conclude that DC-IP time-lapse measurements can non-intrusively and reliably image freezing patterns and their lateral variation on a 10-100 m scale that is difficult to sample by point measurements. In combination with laboratory experiments, the different patterns in resistivity and chargeability changes will enable the disentanglement of processes (e.g., fluid migration and freezing, advective and diffusive heat transport) occurring during freezing of the ground. The technology can be expanded to three dimensions and also to larger scale. (C) 2015 Elsevier B.V. All rights reserved.
机译:随着多年冻土的融化和气候变化引起的活性层动力学变化,地下的生物地球化学过程和热过程之间的相互作用变得非常重要。在这里,已使用直流(DC)电阻率和感应极化(IP)测量以较高的时间分辨率并以相对较大的比例在格陵兰岛西海岸Disko岛的荒地苔原站点上对活动层动力学进行了监测(北纬69度) )。在现场,由于该区域的等温弹簧,活性层与较深的永冻层断开连接。钻孔沉积物特征和地下温度是DC-IF测量的补充。自2013年7月以来,一个延时的DC-IP监控系统每天在42个电极的电极上采集至少六个数据集,电极间距为0.5 m。该数据采集系统的远程控制可实现对测量时间表的交互式调整,对于在冬季获取数据至关重要,在冬季,极高的接触电阻会增加对电阻率仪的需求。在2013年10月至2014年2月的冻结期间获得的数据清楚地表明,土壤冻结是电阻率的强劲增长。虽然冻结层通常会随着时间推移而变深,但沿剖面观察到冻结深度会发生一些变化。与深度特定的土壤温度进行比较表明,电阻率与低于冰点温度之间呈指数关系。全衰落IF数据的时移反演表明,随着地面冻结,归一化带电性下降,这是总未冻结水减少和孔隙水中离子浓度较高的结果。我们得出的结论是,DC-IP延时测量可以非侵入性且可靠地对冻结模式及其横向变化进行成像,其范围为10-100 m,难以通过点测量进行采样。与实验室实验相结合,电阻率和荷电率变化的不同模式将使在冻结地面期间发生的过程(例如,流体迁移和冻结,对流和扩散热传输)解开纠缠。该技术可以扩展到三个维度,也可以扩展到更大的规模。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号