首页> 外文期刊>Cold regions science and technology >Indirect monitoring of distributed ice loads on a steel gate in a cold region
【24h】

Indirect monitoring of distributed ice loads on a steel gate in a cold region

机译:间接监测寒冷地区钢闸门上分布的冰负荷

获取原文
获取原文并翻译 | 示例
           

摘要

A steel gate is one of the major components of a hydraulic power station for storing water and monitoring the water level. In cold regions, the temperature decreases to well below the freezing point, and the water turns to ice, which can apply high loads on the steel gate, leading to large deformations and failure of the gate. This study aims to monitor and analyse the ice load distribution on a steel gate using an inverse method. As a case study, a steel gate at the hydraulic station on the Songhua River in Harbin is selected. The steel gate is equipped with several vibrating wire strain gauges, and deformation data for various locations on the structure was collected for 100 days. As experimental identification of the system transfer matrix requires information concerning the actual loads, which is not directly attainable, the transfer matrix was constructed using a finite element method. Five inverse methods were verified with a certain number of load patterns to determine the optimal method. The ice load distribution obtained using the optimal method is verified with the deformation data, indicating accurate load identification. Consequently, variation in the ice load distribution during the freezing period is monitored, and the relationship between the total ice force and temperature is obtained. During the winter of 2015-2016, the average ice line load gradually increased until reaching a maximum of approximately 25 kN/m on 11 Dec. 2015. Subsequently, the ice line load fluctuated between 17 and 25 kN/m. Finally, the ice released all of the force within 3 days beginning on 15 Mar. 2016.
机译:钢制闸门是水力发电站的主要组成部分之一,用于存储水和监控水位。在寒冷地区,温度下降到远低于冰点的温度,水变成冰,这会在钢制闸门上施加高负荷,导致闸门大变形和故障。这项研究旨在使用逆方法来监测和分析钢制闸门上的冰负荷分布。作为案例研究,选择了哈尔滨松花江液压站的钢制闸门。钢制闸门配备了数个振弦式应变仪,并且收集了结构上各个位置的变形数据,为期100天。由于系统传递矩阵的实验识别需要有关实际负载的信息,而这是无法直接获得的,因此传递矩阵是使用有限元方法构造的。用一定数量的载荷模式验证了五种逆方法,以确定最佳方法。使用变形数据验证了使用最佳方法获得的冰负荷分布,表明了准确的负荷识别。因此,监测了冻结期间的冰负荷分布的变化,并且获得了总冰力与温度之间的关系。在2015-2016年冬季,平均冰线负荷逐渐增加,直到2015年12月11日达到最大值约25 kN / m。随后,冰线负荷在17至25 kN / m之间波动。最终,冰层从2016年3月15日起3天内释放了全部力量。

著录项

  • 来源
    《Cold regions science and technology》 |2018年第7期|267-287|共21页
  • 作者单位

    Harbin Engn Univ, Coll Shipbldg Engn, Engn Struct Lab, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Coll Shipbldg Engn, Engn Struct Lab, Harbin 150001, Heilongjiang, Peoples R China;

    Univ Sydney, Sch Aerosp Mech & Mechatron Engn, LSMS, Sydney, NSW 2006, Australia;

    Univ Sydney, Sch Aerosp Mech & Mechatron Engn, LSMS, Sydney, NSW 2006, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Steel gate; Ice load; Load identification; Inverse method;

    机译:钢闸门;冰荷载;荷载识别;反演方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号