首页> 外文期刊>Cold regions science and technology >Possible effect of flow velocity on thawing rock-water-ice systems under local thermal non-equilibrium conditions
【24h】

Possible effect of flow velocity on thawing rock-water-ice systems under local thermal non-equilibrium conditions

机译:局部热非平衡条件下流速对解冻岩冰系统的可能影响

获取原文
获取原文并翻译 | 示例
           

摘要

Climate change causes thawing of many permafrost regions, increasing the rockfall and landslide hazard when the cementing ice melts and slopes become unstable. The thermo-hydro-mechanical processes are strongly coupled and complex to describe in those intrinsic multi-phase systems. So far, thermal models often utilize the local thermal equilibrium approach, assuming that all three phases (solid rock or soil, liquid water and ice) are in thermal equilibrium. While this approach is very tempting due to its easy implementation, there are situations especially during thawing in which temperature gradients exist between the involved phases. In such cases, the local thermal equilibrium approach has to be replaced by the more complex local thermal non-equilibrium approach in which the thermodynamic state of each phase is described by its own temperature. In those models, the heat transfer between the phases is described explicitly in dependence of the heat transfer coefficient and the contact area. Parameterization of the heat transfer coefficient is a challenging task and mostly relies on empirical values and relationships. Most models using the local thermal non-equilibrium approach utilize a constant heat transfer coefficient. However, experiments under geothermal temperature conditions prove that the heat transfer coefficient depends, among others, on flow velocity. This is of special interest as strong dynamics are characteristic for thawing system which impose a unique challenge to heat transfer models. For example, the volume fraction of the liquid domain increases significantly during thawing of rock-ice systems due to the melting of the ice phase. This again, directly influences flow velocity. In this work, the possible effect of a velocity dependent heat transfer coefficient on thawing rock-water-ice systems is investigated. With higher flow velocity, advection effects of the intruding fluid become more significant but also heat transfer is increased. When the intruding liquid water is colder than the surrounding rock, the melting rate is maximum for a specific flow velocity, as advection of cold water and heating from the rock counteract. While this is a purely synthetic study and no experimental data yet exists for validation of the proposed scheme, this study indicates the existence of a way more complex interaction between liquid fluid flow and melting processes as previously expected and way beyond state-of-the-art modeling.
机译:气候变化导致许多多年冻土地区解冻,当胶结冰融化和斜坡变得不稳定时,岩石崩塌和滑坡的危险性增加。热-水力-机械过程是强耦合且复杂的,难以描述那些固有的多相系统。到目前为止,假设所有三个阶段(固体岩石或土壤,液态水和冰)处于热平衡状态,热模型通常利用局部热平衡方法。尽管此方法由于易于实施而非常诱人,但在解冻过程中,尤其是在某些情况下,涉及的相之间存在温度梯度。在这种情况下,必须用更复杂的局部热不平衡方法代替局部热平衡方法,在该方法中,每个相的热力学状态由其自身的温度来描述。在那些模型中,根据传热系数和接触面积明确描述了相之间的传热。传热系数的参数化是一项艰巨的任务,并且主要取决于经验值和关系。使用局部热非平衡方法的大多数模型都使用恒定的传热系数。然而,在地热温度条件下的实验证明,传热系数尤其取决于流速。这特别受关注,因为强大的动力特性是解冻系统的特征,它对传热模型构成了独特的挑战。例如,由于冰相的融化,在岩冰系统解冻期间,液域的体积分数显着增加。同样,这直接影响流速。在这项工作中,研究了速度依赖的传热系数对解冻岩冰冰系统的可能影响。随着流速的提高,侵入流体的对流作用变得更加明显,但热传递也增加了。当侵入的液态水比周围的岩石冷时,对于特定的流速,熔化速度最大,因为冷水的平流和岩石的热量会抵消。虽然这是纯粹的综合研究,尚无用于验证所提出方案的实验数据,但该研究表明,液体流体流和熔融过程之间存在一种如先前预期的更复杂相互作用的方式,并且超出了目前的状态。艺术造型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号