首页> 外文期刊>Cogeneration & Distributed Generation Journal >INTEGRATED COMBINED HEAT AND POWER AND GAS COOLING
【24h】

INTEGRATED COMBINED HEAT AND POWER AND GAS COOLING

机译:热电联供和气体冷却一体化

获取原文
获取原文并翻译 | 示例
           

摘要

Fully dedicated on-site combined heat and power (CHP) systems present both challenges and opportunities for large multi-building projects; particularly when employing a combined cycle approach in the 3-20 MW range. While some distributed power generation systems hedge their bets through reliance on both the sale and export of power (e.g., paralleling with a serving utility to achieve favorable economics), disappointing de-regulation benefits and the failure of energy trading to smooth out power supply vs. demand cost uncertainty has been a sobering experience for many California customers. Recent rethinking by concerned CHP designers has focused on exploring smaller footprint alternatives to use of higher cost heat-recovery-steam-generators (HRSGs). One such approach involves the use of prefabricated and fully integrated steam generators, complete with associated heat exchangers, controls and pumping systems, employing low pressure, non-volatile, recirculating heat transfer fluids (HTF) capable of direct heat extraction of turbine exhaust gas waste heat to generate steam and allow cascading the remaining captured waste heat to drive absorption chiller(s), and space and domestic hot water heating systems enabling greater utilization of available heat reclamation potentials in satisfying highly variable annual building power, heating and cooling load demands. This is achieved through maintaining favorable log-mean-temperature-differentials (LMTDs) at the turbine gas extraction coil also resulting in a lower exhaust gas temperature discharge to ambient. Various examples of such alternative HRSG cycles will be presented for gas turbine driven chiller and/or generator application, as well as gas turbine combined cycle operation to demonstrate the operational versatility and life cycle benefits of this approach for the above referenced range of commercially available gas turbines.
机译:完全专用的现场热电联产(CHP)系统给大型多层建筑项目带来了挑战,也带来了机遇。特别是在3-20兆瓦范围内采用联合循环方法时。尽管一些分布式发电系统通过依赖电力的销售和出口来对冲赌注(例如,与服务性公用事业并驾齐驱以实现有利的经济效益),但令人失望的放松管制的好处以及能源交易未能使电力供应变得平稳。需求成本的不确定性对于许多加利福尼亚州的客户来说都是令人震惊的经历。有关的热电联产设计师最近的重新思考集中在探索较小的占地面积替代方案,以使用成本更高的热回收蒸汽发生器(HRSG)。一种这样的方法涉及使用预制的和完全集成的蒸汽发生器,以及相关的热交换器,控制器和泵系统,采用低压,非易失性,再循环传热流体(HTF),它们能够直接提取涡轮废气的热量热量产生蒸汽,并允许将所收集的剩余废热级联以驱动吸收式冷水机组,空间和生活热水加热系统可充分利用可用的热回收潜力,以满足每年变化很大的建筑用电,供热和制冷负荷的需求。这是通过在涡轮抽气盘管处保持有利的对数平均温度差(LMTD)来实现的,同时还导致向环境排放的废气温度较低。对于燃气轮机驱动的冷却器和/或发电机应用,以及燃气轮机联合循环操作,将展示此类替代性HRSG循环的各种示例,以证明该方法在上述参考范围的商用燃气中的操作通用性和生命周期效益涡轮机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号