...
首页> 外文期刊>Coastal engineering >Bed shear stress, surface shape and velocity field near the tips of dam-breaks, tsunami and wave runup
【24h】

Bed shear stress, surface shape and velocity field near the tips of dam-breaks, tsunami and wave runup

机译:坝体破裂,海啸和波浪上升尖端附近的地层剪切应力,表面形状和速度场

获取原文
获取原文并翻译 | 示例

摘要

An analytical model is presented for the 2DV flow-structure, bed shear stress and surface shape of the tips of dam-break waves, tsunami- or wave run-up. This model differs from previous analytical models, which have taken the usual 'hydraulics approach', describing bed-parallel velocities only and expressing the bed shear stress, tau in terms of a friction factor from steady, uniform flow and an ad-hoc velocity. The 2DV model presented here gives a simple, rational explanation for the fact that the boundary layer is very thin at the contact point. In turn, this explains the measurements of bed shear stresses, which decay with distance s from the tip, or at a fixed point, with time t since passage of the tip. The manner of tau-decay depends on the growth of the boundary layer thickness delta with distance from the tip. The details of this boundary layer growth depend on challenging turbulence features for unsteady, non-uniform flows over rough and usually mobile beds. For illustrative purposes, details are given for the simple example of delta = (v(t)t)(1/2) = (v(t)s/c)(1/2), where v(t) is the nominal eddy-viscosity and c is the speed of the tip, assumed to progress with constant form. With this variation of delta, the model gives tau similar to t(-1/2) = (s/c)(-1/2), which is in good qualitative agreement with measurements. Subsequently, this quasi steady model gives h similar to s(1/4) for the depth on a horizontal bed, also in good agreement with experiments. The 2DV flow pattern includes surface particles drifting towards the tip and eventually impacting on the bed at the contact point with full forward momentum and large bed-normal velocity. As well as large local bed shear stresses, this tip-flow pattern involves large vertical accelerations and associated large localized pressures, which are likely to be important for the sediment entrainment under the tip. The eddy viscosity is the only tuning parameter in this simple initial model. Based on shear-stress and depth measurements from laboratory settings, with tip propagation speeds of the order 2 m/s, one finds that the required eddy viscosity is in the range 1 x 10(-6) - 18 x 10(-6) m(2)/s increasing with increasing bed roughness in the range from smooth beds to beds of 2.85 mm fixed sand-grains.
机译:提出了一个解析模型,用于2DV流动结构,坝体剪应力和溃坝,海啸或波浪上升的尖端的表面形状。该模型不同于以前的分析模型,后者采用了通常的“液压方法”,仅描述了平行于床层的速度,并根据稳定,均匀流动和特殊速度的摩擦系数表示了床层的剪切应力tau。此处介绍的2DV模型对边界层在接触点处非常薄这一事实给出了简单,合理的解释。反过来,这也解释了床层剪应力的测量值,该值随着距尖端的距离s或在固定点处随尖端经过的时间t而衰减。 τ衰变的方式取决于边界层厚度δ随尖端距离的增长。边界层生长的细节取决于具有挑战性的湍流特征,因为湍流特征是在粗糙且通常为移动的床层上产生不稳定,不均匀的流动。出于说明目的,给出了delta =(v(t)t)(1/2)=(v(t)s / c)(1/2)的简单示例的详细信息,其中v(t)是标称值涡流粘度和c是尖端的速度,假定以恒定形式前进。有了这个变化量,模型给出的tau类似于t(-1/2)=(s / c)(-1/2),与测量值在质量上吻合良好。随后,对于水平床的深度,该准稳态模型给出的h类似于s(1/4),与实验也很吻合。 2DV流动模式包括表面颗粒向尖端漂移,并最终以完全向前的动量和较大的床法向速度在接触点撞击床层。除较大的局部床层剪切应力外,该尖端流型还涉及较大的垂直加速度和相关的较大的局部压力,这对于在尖端下方夹带沉积物可能很重要。在这个简单的初始模型中,涡流粘度是唯一的调整参数。根据实验室设置的切应力和深度测量结果,尖端传播速度为2 m / s,人们发现所需的涡流粘度在1 x 10(-6)-18 x 10(-6)范围内m(2)/ s随着床面粗糙度的增加而增加,范围从光滑床到2.85 mm固定沙粒床。

著录项

  • 来源
    《Coastal engineering》 |2018年第8期|126-131|共6页
  • 作者

    Nielsen Peter;

  • 作者单位

    Univ Queensland, Sch Civil Engn, Brisbane, Qld, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号