...
首页> 外文期刊>CNS & Neurological Disorders - Drug Targets >Editorial [ Glycobiological Approach to Neurological Disorders Guest Editor: Keiko Kato ]
【24h】

Editorial [ Glycobiological Approach to Neurological Disorders Guest Editor: Keiko Kato ]

机译:社论[神经生物学疾病的糖生物学方法客座编辑:加藤敬子]

获取原文
获取原文并翻译 | 示例

摘要

The first glycobiology investigation into neurological disorders showed that ganglioside was a novel glycolipid in the brain of a Tay-Sachs patients in 1939. In the 1960's or later, the finding led to further glycobiology studies into neurological disorders. Advances in this area have continued at a steady rate during most of the twentieth century, based on investigations into the interactions of the highly complicated carbohydrate structures of glycoproteins and glycolipids with the physiological and structural complexity of brain. However, there has recently been an unparalleled explosion of new knowledge. There are many reasons for this acceleration of progress including; (1) collaborative studies using genetically engineered knock-out and knock-in mice along with classical biological and pharmacological approaches, (2) great technical advances in the mass spectroscopy of carbohydrates, and (3) accumulation of genomic and proteomic information, followed by molecular information regarding enzymes involved in sugar metabolism and in the sorting, processing and degradation of oligosaccharides, proteoglycans, and glycolipids. More recently, the important role of glycans has been underscored by the growing list of human diseases that result from defects and mutations in glycosylation.nnThe overall aim of the reviews in this issue is to highlight the most exciting information on glycobiological neurology, and developments in neuroprotective drugs that affect glycosylation and markers of diseases based on glycobiological approach. There has been an increased number of reports describing imbalances of sphingoglycolipids-cholesterol-rich membrane microdomains, or rafts causing disfunctions in brain, where sphingoglycolipids containing gangliosides are rich. The review by Mutoh et al. focuses on the involvements of sphingoglycolipids with risk factors for Alzheimer's diseases (AD) and proposals for glycobiological approaches as future therapies. Schengrund focuses on pathogens that affect the nervous system and require carbohydrates during any process of the infectious machinery. While there is a recent example of Tamiflu, an inhibitor of the enzyme neuraminidase (sialidase), which is effective for the treatment of influenza A and B in the peripheral system, there is little effective drug against pathogens in the nervous system. This review provides hints for the development of carbohydrate- based drugs against pathogens in the nervous system. Furthermore, Komagamine and Yuki focus on the latest findings about Guillain-Barre syndrome, characterized by auto-immune diseases induced following infection with C. jejuni. Concerning therapeutic approach, Sakuraba et al. describe very recent trials of enzyme-replacement therapy and the development of a brain-specific delivery system for several metabolic diseases that cause neurological disorders. Alternatively, Yu and Yanagisawa review knowledge of neural stem cells analyzed from a glycobiological dimension in order to use these as cell therapy in the future. The sialylated group possesses a negative charge at the terminal position of sugar linkages on sphingoglycolipids and glycoproteins. Sampathkumar et al. describe perspectives of sialic acids as diagnostic and therapeutic reagents for neurological disorders. Finally, Narimatsu et al. review the nervous symptoms of knock-out mice with targeted deletions of glycosyltransferase genes and their usefulness as animal models for neurological disorders. Taken together, the sharing of information concerning glycobiological neurology could facilitate explorations into novel drugs based on glycobiology to treat neurological diseases induced by a variety of causes, in addition to inborn errors that cause neurological disorders. I would like to thank Dr. Masao Iwamori for giving advice for determination of the present authors. I would like to thank Dr. Matthew Honan, the Editorial Director; Dr. Mark Varney, the Editor-in-Chief; Miss Saima Ghaffar Rao, the Manager Publications; and the staff at Bentham Science Publishers for their assistance, efforts and time.
机译:对神经系统疾病的首次糖生物学研究表明,神经节苷脂是1939年Tay-Sachs患者大脑中的一种新型糖脂。在1960年代或之后,这一发现导致了对神经系统疾病的进一步糖生物学研究。在二十世纪的大部分时间里,根据对糖蛋白和糖脂的高度复杂的碳水化合物结构与大脑的生理和结构复杂性之间相互作用的研究,该领域的进展一直以稳定的速度持续进行。但是,最近出现了无与伦比的新知识爆炸。加速进步的原因有很多,其中包括: (1)使用基因工程基因敲除和敲入小鼠以及经典的生物学和药理学方法进行的合作研究;(2)碳水化合物质谱技术的重大技术进步;(3)积累基因组和蛋白质组学信息,其次有关糖代谢以及寡糖,蛋白聚糖和糖脂的分类,加工和降解中涉及的酶的分子信息。最近,由于糖基化缺陷和突变导致的人类疾病列表不断增加,聚糖的重要作用得到了强调。nn本期综述的总体目的是着重介绍糖生物学神经病学方面最激动人心的信息,以及糖基化的发展。基于糖生物学方法影响糖基化和疾病标志物的神经保护药物。越来越多的报道描述了富含鞘氨醇脂类-胆固醇的膜微区或引起脑功能异常的木筏的失衡,其中富含神经节苷脂的鞘氨醇脂类。 Mutoh等人的评论。重点关注鞘糖脂与阿尔茨海默氏病(AD)的危险因素的关系以及糖生物学方法作为未来疗法的建议。 Schengrund专注于影响神经系统并在任何感染机制过程中都需要碳水化合物的病原体。虽然最近有一个例子,达菲是神经氨酸酶(唾液酸酶)的抑制剂,对周围系统的甲型和乙型流感有效,但对神经系统病原体的有效药物却很少。这篇综述为开发针对神经系统病原体的基于碳水化合物的药物提供了提示。此外,Komagamine和Yuki专注于有关Guillain-Barre综合征的最新发现,该疾病的特征是空肠弯曲杆菌感染后诱发的自身免疫性疾病。关于治疗方法,Sakuraba等。描述了酶替代疗法的最新试验以及针对几种引起神经系统疾病的代谢疾病的大脑特异性递送系统的开发。另外,Yu和Yanagisawa回顾了从糖生物学角度分析的神经干细胞的知识,以便将来将其用作细胞疗法。唾液酸化基团在鞘脂糖脂和糖蛋白上的糖键的末端具有负电荷。 Sampathkumar等。描述了唾液酸作为神经系统疾病的诊断和治疗试剂的观点。最后,成松等。综述了靶向清除糖基转移酶基因的基因敲除小鼠的神经症状及其作为神经系统疾病动物模型的有用性。综上所述,关于糖生物学神经病学的信息共享可以促进对基于糖生物学的新药的探索,以治疗由多种原因引起的神经病,以及引起神经病的先天性错误。我要感谢岩森昌雄博士为确定本作者提供的建议。我要感谢编辑总监Matthew Honan博士;主编Mark Varney博士;经理出版物Saima Ghaffar Rao小姐;以及边沁科学出版社的工作人员的协助,努力和时间。

著录项

  • 来源
    《CNS & Neurological Disorders - Drug Targets 》 |2006年第4期| p.373-373| 共1页
  • 作者

    Keiko Kato;

  • 作者单位

    Department of Structural and Functional Biosciences for Animals Graduate School of Life and Environmental Sciences Osaka Prefecture University Japan.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号