...
首页> 外文期刊>Climate dynamics >Impact of a shallow groundwater table on the global water cycle in the IPSL land-atmosphere coupled model
【24h】

Impact of a shallow groundwater table on the global water cycle in the IPSL land-atmosphere coupled model

机译:IPSL地-气耦合模型中浅层地下水位对全球水循环的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The main objective of the present work is to study the impacts of water table depth on the near surface climate and the physical mechanisms responsible for these impacts through the analysis of land-atmosphere coupled numerical simulations. The analysis is performed with the LMDZ (standard physics) and ORCHIDEE models, which are the atmosphere-land components of the Institut Pierre Simon Laplace (IPSL) Climate Model. The results of sensitivity experiments with groundwater tables (WT) prescribed at depths of 1 m (WTD1) and 2 m (WTD2) are compared to the results of a reference simulation with free drainage from an unsaturated 2 m soil (REF). The response of the atmosphere to the prescribed WT is mostly concentrated over land, and the largest differences in precipitation and evaporation are found between REF and WTD1. Saturating the bottom half of the soil in WTD1 induces a systematic increase of soil moisture across the continents. Evapotranspiration (ET) increases over water-limited regimes due to increased soil moisture, but it decreases over energy-limited regimes due to the decrease in downwelling radiation and the increase in cloud cover. The tropical (25A degrees S-25A degrees N) and mid-latitude areas (25A degrees N-60A degrees N and 25A degrees S-60A degrees S) are significantly impacted by the WT, showing a decrease in air temperature (-0.5 K over mid-latitudes and -1 K over tropics) and an increase in precipitation. The latter can be explained by more vigorous updrafts due to an increased meridional temperature gradient between the equator and higher latitudes, which transports more water vapour upward, causing a positive precipitation change in the ascending branch. Over the West African Monsoon and Australian Monsoon regions, the precipitation changes in both intensity (increases) and location (poleward). The more intense convection and the change of the large-scale dynamics are responsible for this change. Transition zones, such as the Mediterranean area and central North America, are also impacted, with strengthened convection resulting from increased ET.
机译:本工作的主要目的是通过对陆-气耦合数值模拟的分析,研究地下水位深度对近地表气候的影响以及造成这些影响的物理机制。该分析是使用LMDZ(标准物理学)和ORCHIDEE模型进行的,它们是Pierre Simon Laplace研究所(IPSL)气候模型的大气-陆地成分。将规定深度为1 m(WTD1)和2 m(WTD2)的地下水位(WT)的敏感性实验结果与从2 m非饱和土壤(REF)自由排水的参考模拟结果进行了比较。大气对规定的WT的响应主要集中在陆地上,而REF和WTD1之间的降水和蒸发差异最大。 WTD1中土壤的下半部分饱和导致整个大陆土壤水分的系统增加。由于土壤水分增加,在水分受限的条件下,蒸散量(ET)会增加,但在能量受限的条件下,由于下降流辐射量的减少和云量的增加,蒸发量会减少。热带地区(北纬25度A-25A度)和中纬度地区(北纬25A度N-60A和南纬25A度A-60A)严重影响了WT,显示出气温降低(-0.5 K中纬度地区和热带地区-1 K)和降水增加。后者可以解释为由于赤道和较高纬度之间子午温度梯度的增加而引起的更剧烈的上升气流,这会向上输送更多的水蒸气,从而在上升分支中产生正的降水变化。在西非季风和澳大利亚季风地区,降水的强度(增加)和位置(极向)都发生变化。更强烈的对流和大规模动力学的变化是造成这种变化的原因。过渡区,如地中海地区和北美洲中部地区,也受到影响,ET增加导致对流增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号