...
首页> 外文期刊>Circuits, systems, and signal processing >Efficient Design and Implementation of Energy Detection-Based Spectrum Sensing
【24h】

Efficient Design and Implementation of Energy Detection-Based Spectrum Sensing

机译:基于能量检测的频谱感应的高效设计与实现

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cognitive radio allows opportunistic spectrum access by finding and using temporally and spatially unused radio channels to enhance the utilization of scarce radio spectrum. Various spectrum sensing techniques have been proposed to detect the availability of unoccupied radio channels. In this article, we first briefly discuss the merits of various spectrum sensing techniques. We then present an efficient hardware architecture for energy detection-based spectrum sensing. We discuss various design parameters and features, such as transform length, window selection, window overlap, ensemble averaging, and dynamic thresholding for efficient realization of the designed spectrum sensing module. Then, an efficient hardware architecture for an optimal energy detection-based spectral estimator is presented. To reduce the computational complexity, we utilize a polyphase filter structure. For the high-performance implementation of the proposed spectrum sensing architecture, we use cutset retiming, and for the compact realization, we use the time-multiplexing technique to reuse hardware resources. We model our spectrum sensing module in both floating-point and fixed-point representations using our custom-developed library of numerical operations. The synthesizable parameteric model of the energy detection-based spectrum sensing module is developed in Verilog hardware description language. The architecture of the designed spectrum sensing module is implemented on a Xilinx Virtex-7 field-programmable gate array and operates at 327 MHz. The cycle-accurate bit-true hardware simulation results are verified against its fixed-point software simulation results. An ASIC architecture of the designed spectrum sensing module is estimated to occupy 5.65mm(2) and dissipate 9.10 mW from a 1.05-V supply while operating at 200 MHz in a standard 32-nm CMOS technology for a 200 MHz bandwidth.
机译:认知无线电通过查找并使用时间和空间上未使用的无线电信道来增强稀有无线电频谱的利用率,从而允许机会频谱访问。已经提出了各种频谱感测技术来检测未占用的无线电信道的可用性。在本文中,我们首先简要讨论各种频谱感测技术的优点。然后,我们提出了一种用于基于能量检测的频谱感测的高效硬件架构。我们讨论了各种设计参数和功能,例如变换长度,窗口选择,窗口重叠,集成平均和动态阈值,以有效实现所设计的频谱感测模块。然后,提出了一种基于最优能量检测的频谱估计器的高效硬件架构。为了降低计算复杂度,我们采用了多相滤波器结构。对于所提出的频谱感测体系结构的高性能实现,我们使用割集重定时,对于紧凑的实现,我们使用时分复用技术来重用硬件资源。我们使用自定义开发的数值运算库,以浮点和定点表示形式对频谱感测模块进行建模。使用Verilog硬件描述语言开发了基于能量检测的频谱感应模块的可综合参数模型。设计的频谱感测模块的架构在Xilinx Virtex-7现场可编程门阵列上实现,并以327 MHz的频率运行。相对于其定点软件仿真结果,验证了周期精确的位真硬件仿真结果。设计的频谱感测模块的ASIC架构估计占用1.05 V电源的5.65mm(2)并耗散9.10 mW,同时在200 MHz的标准32-nm CMOS技术中以200 MHz的带宽工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号