...
首页> 外文期刊>Circuit World >A CMOS implementation of controller based all digital phase locked loop (ADPLL)
【24h】

A CMOS implementation of controller based all digital phase locked loop (ADPLL)

机译:基于所有数字阶段锁定环路(ADPLL)的控制器的CMOS实现

获取原文
获取原文并翻译 | 示例
           

摘要

PurposeBiomedical radio frequency (RF) transceivers require miniaturized forms with long battery life and low power consumption. The medical implant communication service (MICS) band in the frequency range of 402-405 MHz is widely used for medical RF transceivers because the MICS band signals have reasonable propagation characteristics and are suited to achieve good results. The implementation of the RF front-end for medical devices has many challenges as these dictate low power consumption. In particular, phase-locked loop is one of the most critical blocks of the RF front-end. The purpose of this paper is to the design of controller-based all-digital phase-locked loop (ADPLL) in a 45 nm CMOS process.Design/methodology/approachInitially, an open-loop architecture phase frequency detector (PFD) is designed. Then based on the concept of differential buffer, a differential ring oscillator (RO) is built using capacitive boosting technique. After that, the frequency controller block is built by proper mathematical modeling that does the job of loop filter, which behaves like a phase interpolator. Frequency controller block has tuning register block, tuning word register. The tuning block is built using the Metal Oxide Semiconductor (MOS) caps. Finally, the integration of all the blocks is done and the ADPLL architecture that locks at 402 MHz is achieved.FindingsThe designed PFD is dead zone free that operates at 1 GHz. The differential RO oscillates at 495 MHz. The proposed ADPLL operates at 402 MHz with measured phase noise of -98.36 at 1-MHz offset. This ADPLL exhibits rms jitter of 4.626 ps with a total power consumption of 216.5 mu W.Research limitations/implicationsA time to digital converter (TDC)-less controller-based low power ADPLL covering the MICS frequency band for biomedical applications has been designed in 45 nm/0.68 V CMOS technology. The ADPLL proposed in this draft uses differential oscillator with capacitively boosted technique which reduced the operating voltage to as low as 0.68 V. This ADPLL has a bandwidth of 20 kHz and works at reference frequency of 20 MHz consumed power of 216.5 mu W, while generating an output frequency of 402 MHz. The tuning range is from 375 to 428 MHz. With the phase noise of -98.36 dbc/Hz at 1 MHz, a frequency controller block replaces the usage of TDC.Social implicationsThe designed ADPLL will definitely pave way to greater research arena in the field of biomedical field. This ADPLL is a unique combination that combines electronics and biomedical field. The designed ADPLL is itself a broader application to biomedical field that will have a positive impact on the society.Originality/valueThe implementation of open-loop PFD and RO using the capacitive boosting technique is a unique combination. This is comprehended well with frequency controller block that eliminates the usage of TDC and behaves as phase interpolator. The entire design of ADPLL which suits the application of MICS band of frequency has been designed carefully to work at low power.
机译:目的地射频(RF)收发器需要具有长电池寿命和低功耗的小型化形式。在402-405MHz的频率范围内的医疗植入通信服务(MICS)带广泛用于医疗RF收发器,因为MICS带信号具有合理的传播特性并且适合达到良好的效果。用于医疗器械的RF前端的实施具有许多挑战,因为这些挑战了低功耗。特别地,锁相环是RF前端的最关键块之一。本文的目的是在45 nm CMOS过程中设计基于控制器的全数字锁相环(ADPLL).Design/Methodology / Preckinitially,设计了一个开环架构相位频率检测器(PFD)。然后基于差分缓冲器的概念,使用电容升压技术构建差分环振荡器(RO)。之后,频率控制器块是由正确的数学建模构建的,该数学建模是循环滤波器的作业,这与相位内插器类似。频率控制器块具有调谐寄存器块,调整字寄存器。调谐块是使用金属氧化物半导体(MOS)盖构建的。最后,完成了所有块的集成,并达到了402 MHz锁定的ADPLL架构。Findingsthe设计的PFD是免费的,可在1 GHz下运行。差分RO在495 MHz振荡。所提出的ADPLL在402MHz下运行,测量的相位噪声为-98.36,在1-MHz偏移量。该ADPLL展示了4.626 PS的RMS抖动,总功耗为216.5μmw.research限制/含义的数字转换器(TDC)的基于控制器的低功耗ADPLL覆盖生物医学应用的MICS频段,已经设计成45 NM / 0.68 V CMOS技术。在该草案中提出的ADPLL使用电容提升技术的差分振荡器,其将工作电压降低至低至0.68 V.该ADPLL具有20 kHz的带宽,并以216.5μm的216.5μm的电力为20 kHz的参考频率工作。输出频率为402 MHz。调谐范围为375至428 MHz。频率控制块的相位噪声为-98.36 dbc / hz,频率控制器块取代了TDC.Social Implicalsthe设计的Adpll将肯定会铺设到生物医学领域领域的更大研究竞技场。此ADPLL是一种结合电子和生物医学领域的独特组合。设计的ADPLL本身就是对生物医学领域的更广泛的应用,这些领域将对社会产生积极影响。使用电容式升压技术的开环PFD和RO的virceCity / Value的实施是一种独特的组合。这对于频率控制器块很好地理解,消除了TDC的使用并表现为相位内插器。适用于频率频带的ADPLL的整体设计已经小心地设计了低功耗。

著录项

  • 来源
    《Circuit World》 |2021年第1期|71-85|共15页
  • 作者

    Balikai Vikas; Kittur Harish;

  • 作者单位

    Vellore Inst Technol Sch Elect Engn Vellore Tamil Nadu India;

    Vellore Inst Technol Sch Elect Engn Vellore Tamil Nadu India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ADPLL; Phase frequency detector; Frequency controller;

    机译:ADPLL;相位频率检测器;频率控制器;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号