...
首页> 外文期刊>Chemosphere >Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments
【24h】

Conceptual and numerical model of uranium(VI) reductive immobilization in fractured subsurface sediments

机译:裂化地下沉积物中铀还原固定化的概念和数值模型

获取原文
获取原文并翻译 | 示例
           

摘要

A conceptual model and numerical simulations of bacterial U(VI) reduction in fractured subsurface sediments were developed to assess the potential feasibility of biomineralization at the fracture/matrix interface as a mechanism for immobilization of uranium in structured subsurface media. The model envisions flow of anaerobic groundwater, with or without acetate as an electron donor for stimulation of U(VI) reduction by dissimilatory metal-reducing bacteria (DMRB), within mobile macropores along a one-dimensional flow path. As the groundwater moves along the flow path, U(VI) trapped in the immobile mesopore and micropore domains (the sediment matrix) becomes desorbed and transferred to the mobile macropores (fractures) via a first-order exchange mechanism. By allowing bacterial U(VI) reduction to occur in the mesopore domain (assumed to account for 12% of total sediment pore volume) according to experimentally-determined kinetic parameters and an assumed DMRB abundance of 10(7) cells per cm(3) bulk sediment (equivalent to 4 mg of cells per dm(3) bulk sediment), the concentration of U(VI) in the macropore domain was reduced ca. 10-fold compared to that predicted in the absence of mesopore DMRB activity after a 6-month simulation period. The results suggest that input of soluble electron donors over a period of years could lead to a major redistribution of uranium in fractured subsurface sediments, converting potentially mobile sorbed U(VI) to an insoluble reduced phase (i.e. uraninite) in the mesopore domain that is expected to be permanently immobile under sustained anaerobic conditions. © 2004 Elsevier Ltd. All rights reserved.
机译:建立了一种概念模型和数值模拟的方法来减少裂缝性地下沉积物中细菌U(VI)的含量,以评估在裂缝/基质界面处生物矿化作为将铀固定在结构性地下介质中的一种机制的潜在可行性。该模型设想了沿一维流动路径在可移动大孔内的有氧或无氧乙酸作为电子供体的厌氧地下水的流动,​​以刺激异化金属还原细菌(DMRB)还原U(VI)。随着地下水沿着流动路径移动,滞留在不动的中孔和微孔域(沉积物基质)中的U(VI)会被解吸,并通过一阶交换机制转移到可移动的大孔(裂缝)中。根据实验确定的动力学参数和假定的DMRB丰度为10(7)个/ cm(3),通过允许细菌U(VI)还原发生在中孔域(假定占沉积物总孔隙体积的12%)中大量沉积物(相当于每dm(3)大量沉积物4 mg细胞),大孔域中U(VI)的浓度降低。经过6个月的模拟期后,与不存在中孔DMRB活性的情况下的预测值相比,预测结果提高了10倍。结果表明,在几年的时间里,可溶性电子供体的输入可能导致铀在裂缝性地下沉积物中的大量重新分布,从而将潜在的可移动吸附的U(VI)转变为中孔区域的不溶性还原相(即尿素)。预期在持续的厌氧条件下永久不动。 &复制; 2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号