...
首页> 外文期刊>Chemosphere >Experimental and theoretical insights into the RCS-Involved electro-catalytic transformation of 4-nitrophenol
【24h】

Experimental and theoretical insights into the RCS-Involved electro-catalytic transformation of 4-nitrophenol

机译:rcs涉及4-硝基苯酚的rcs电气催化转化的实验和理论见解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The important role of reactive chlorine species (RCS) in electrochemical system has been widely concerned for water disinfection recently. In this study, we built an electrochemical system using carbon nanotube as cathode and oxide precursor (Ti/SnO2-Sb2O5-IrO2) as anode, where RCS was produced from Ct. This system was used to degrade nitrogen contaminants, i.e. NOT and 4-nitrophenol. Optimization of the reaction conditions was carried out by a treatment of inorganic nitrogen contaminant NOT and the optimal condition of the electrochemical system was determined at U = 5.5 V, and pH = 10 with a CL concentration of 2000 mg L-1, and the removal efficiency of NO(3) over bar can reach up to 60.6% in 150 min. Under the optimal condition, a common nitrogenous organic pollutant, 4-nitrophenol was treated and a removal efficiency of nearly 100% in 90 min. To investigate the detailed degradation mechanism in the applied electrochemical system, a combined method of products identification and density functional theory (DFT) calculation was employed. It concluded that Cl radicals' generation was stimulated was stimulated by the OH radicals after adding Ct into the electrochemical system. These two radicals jointly promoted the transformation of 4-nitrophenol resulting in the formation of more toxic organic and inorganic substances. In addition, a conversion of organic nitro group to amino group leading to the formation of 4-aminophenol was found and explained by the indirect reduction theory. (C) 2020 Elsevier Ltd. All rights reserved.
机译:反应性氯物种(RCS)在电化学系统中的重要作用已广泛涉及最近的水消毒。在这项研究中,我们用碳纳米管作为阴极和氧化物前体(Ti / SnO2-Sb2O5-IrO2)为阳极构成了一种电化学系统,其中RCS由CT制备。该系统用于降解氮污染物,即不和4-硝基苯酚。通过处理无机氮污染物的处理不进行反应条件的优化,并且在U = 5.5V和pH = 10时测定电化学系统的最佳状况,CL浓度为2000mg L-1,并去除NO(3)含量的效率在150分钟内可达到60.6%。在最佳状态下,处理常见的含氮有机污染物,4-硝基苯酚,在90分钟内去除近100%的去除效率。为了研究所施加的电化学系统中的详细降解机制,采用了产品识别和密度函数理论(DFT)计算的组合方法。它得出结论,在将CT加入电化学系统后,通过OH基团刺激Cl自由基的产生。这两种自由基共同促进了4-硝基苯酚的转化,导致形成更多有毒的有机物和无机物质。此外,发现有机硝基转化为氨基,导致形成4-氨基苯酚的形成,并通过间接减少理论解释。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Chemosphere》 |2021年第2期|128015.1-128015.10|共10页
  • 作者单位

    Shandong Univ Environm Res Inst Qingdao 266237 Peoples R China;

    Leibniz Inst Tropospher Res TROPOS Atmospher Chem Dept ACD D-04318 Leipzig Germany;

    Shandong Univ Environm Res Inst Qingdao 266237 Peoples R China;

    Shandong Univ Environm Res Inst Qingdao 266237 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Carbon nanotube electrode; Electro-catalysis; Cl radicals; 4-Nitrophenol degradation; DFT modeling;

    机译:碳纳米管电极;电催化;Cl基团;4-硝基苯酚降解;DFT建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号