...
首页> 外文期刊>Chemosphere >Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs)
【24h】

Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs)

机译:生物电化学方法对氯化脂肪烃(CAHs)进行还原和氧化脱氯

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A sequential reductive-oxidative treatment was developed in this study in a continuous-flow bio-electrochemical reactor to address bioremediation of groundwater contaminated by trichloroethene (TCE) and less-chlorinated but still harmful intermediates, such as vinyl chloride. In order to optimize the anodic compartment, whereby the oxygen-driven microbial oxidation of TCE-daughter products occurs, abiotic batch experiments were performed with various anode materials poised at +1.20 V vs. SHE (i.e., graphite rods and titanium mesh anode coated with mixed metal oxides (MMO)) and setups (i.e., electrodes embedded within a bed of silica beads or graphite granule). The MMO anode displayed higher efficiency (>90%) for oxygen generation compared te the graphite electrodes. Additionally, the graphite bed presence adversely affects oxygen generation, likely due to the oxygen scavenging. This effect was completely eliminated by replacing the graphite granules with silica beads. The anodic setups were thereafter verified in a mentioned reactor at an applied TCE loading rate of approximately 20 mu M d(-1) and a hydraulic retention time of 1.4 d in each compartment. The cathode consisted of a bed of graphite granules and was potentiostatically controlled at -0.65 V vs. SHE. The best reactor performance in terms of removal efficiency (i.e., >97%), removal rate (i.e., 121.8 +/- 2.7 mu eq L-1 d(-1)), and the residual concentration (i.e., 5.03 +/- 0.63 mu eg L-1) of chlorinated contaminants was achieved with the MMO anode placed in a silica bed. Ecotoxicity tests performed with algae confirmed these results by showing progressive toxicity reduction from inlet to cathodic and anodic effluent using this reactor configuration. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在这项研究中,在连续流式生物电化学反应器中开发了一种顺序还原氧化处理技术,以解决被三氯乙烯(TCE)和氯化程度低但仍有害的中间体(如氯乙烯)污染的地下水的生物修复问题。为了优化阳极隔室,从而发生三氯乙烯(TCE)女儿产品的氧气驱动的微生物氧化,对各种阳极材料(相对于SHE保持在+1.20 V的条件下)进行了非生物批量实验(即,石墨棒和钛网阳极涂层混合金属氧化物(MMO))和装置(即,嵌入二氧化硅珠或石墨颗粒床中的电极)。与石墨电极相比,MMO阳极显示出更高的产氧效率(> 90%)。另外,石墨床的存在可能会由于氧气清除而不利地影响氧气的产生。通过用二氧化硅珠代替石墨颗粒,完全消除了这种作用。此后,在上述反应器中以约20μM d(-1)施加的TCE加载速率和每个隔室中1.4 d的水力停留时间对阳极设置进行验证。阴极由石墨颗粒床组成,并且恒压控制在-0.65 V vs. SHE。就去除效率(即> 97%),去除率(即121.8 +/- 2.7μeqeq L-1 d(-1))和残留浓度(即5.03 +/-)而言,最佳反应器性能通过将MMO阳极置于二氧化硅床中,可实现0.63μg(例如L-1)的氯化污染物。用该藻类进行的生态毒性测试通过显示出使用该反应器配置从进口到阴极和阳极流出物的毒性逐步降低,证实了这些结果。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号