...
首页> 外文期刊>Chemosphere >A mechanistic study of TiO2 nanoparticle toxicity on Shewanella oneidensis MR-1 with UV-containing simulated solar irradiation: Bacterial growth, riboflavin secretion, and gene expression
【24h】

A mechanistic study of TiO2 nanoparticle toxicity on Shewanella oneidensis MR-1 with UV-containing simulated solar irradiation: Bacterial growth, riboflavin secretion, and gene expression

机译:含紫外线的模拟太阳光辐照TiO2纳米颗粒对拟人希瓦氏菌MR-1毒性的机理研究:细菌生长,核黄素分泌和基因表达

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Toxicity of nanomaterials to ecological systems has recently emerged as an important field of research, and thus, many researchers are exploring the mechanisms of how nanoparticles impact organisms. Herein, we probe the mechanisms of bacteria-nanoparticle interaction by investigating how TiO2 nanoparticles impact a model organism, the metal-reducing bacterium Shewanella oneidensis MR-1. In addition to examining the effect of TiO2 exposure, the effect of synergistic simulated solar irradiation contairiing UV was explored in this study, as TiO2 nanoparticles are known photocatalysts. The data reveal that TiO2 nanoparticles cause an inhibition of S. oneidensis growth at high dosage without compromising cell viability, yet co-exposure of nanoparticles and illumination does not increase the adverse effects on bacterial growth relative to TiO2 alone. Measurements of intracellular reactive oxygen species and riboflavin secretion, on the same nanoparticle-exposed bacteria, reveal that TiO2 nano particles have no effect on these cell functions, but application of UV-containing illumination with TiO2 nanoparticles has an impact on the level of riboflavin outside bacterial cells. Finally, gene expression studies were employed to explore how cells respond to TiO2 nanoparticles and illumination, and these results were correlated with cell growth and cell function assessment. Together these data suggest a minimal impact of TiO2 NPs and simulated solar irradiation containing UV on S. oneidensis MR-1, and the minimal impact could be accounted for by the nutrient-rich medium used in this work. These measurements demonstrate a comprehensive scheme combining various analytical tools to enable a mechanistic understanding of nanoparticle-cell interactions and to evaluate the potential adverse effects of nanoparticles beyond viability/growth considerations. (C) 2016 Elsevier Ltd. All rights reserved.
机译:纳米材料对生态系统的毒性最近已成为重要的研究领域,因此,许多研究人员正在探索纳米颗粒如何影响生物的机制。在这里,我们通过研究TiO2纳米颗粒如何影响模型生物,即金属还原细菌Shewanella oneidensis MR-1,来探讨细菌-纳米颗粒相互作用的机制。除了研究TiO2暴露的影响外,由于TiO2纳米颗粒是已知的光催化剂,因此在本研究中还探索了协同模拟太阳辐射污染UV的效果。数据显示,TiO2纳米颗粒在高剂量下可抑制拟南芥的生长而不会损害细胞生存力,但是与单独的TiO2相比,纳米颗粒的共同暴露和光照不会增加对细菌生长的不利影响。对暴露于同一纳米颗粒的细菌的细胞内活性氧种类和核黄素分泌的测量表明,TiO2纳米颗粒对这些细胞功能没有影响,但是使用含TiO2纳米颗粒的紫外线照射会对外部核黄素的水平产生影响细菌细胞。最后,通过基因表达研究来探索细胞如何响应TiO2纳米颗粒和照明,并将这些结果与细胞生长和细胞功能评估相关联。这些数据共同表明,TiO2 NPs和模拟的含紫外线的太阳辐射对S. oneidensis MR-1的影响最小,而最小的影响可以由这项工作中使用的营养丰富的培养基来解释。这些测量结果展示了一个综合的方案,该方案结合了各种分析工具,可以对纳米粒子与细胞之间的相互作用进行机械理解,并评估纳米粒子在可行性/生长性方面的潜在不利影响。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号