首页> 外文期刊>Chemosphere >Covalently linked graphene oxide/reduced graphene oxide-methoxylether polyethylene glycol functionalised silica for scavenging of estrogen: Adsorption performance and mechanism
【24h】

Covalently linked graphene oxide/reduced graphene oxide-methoxylether polyethylene glycol functionalised silica for scavenging of estrogen: Adsorption performance and mechanism

机译:共价连接的氧化石墨烯/还原的氧化石墨烯-甲氧基醚聚乙二醇官能化二氧化硅,用于清除雌激素:吸附性能和机理

获取原文
获取原文并翻译 | 示例
           

摘要

Water pollution by pharmaceuticals is a global issue and its remediation is important. To overcome this, we synthesised super hydrophobic nanoporous 3-dimensional ordered nanomaterials with multifunctional binding chemistry for highly efficient adsorption of estrogen (17 beta-estradiol). Graphene oxide (GO) was synthesised via Tours method and methoxylether polyethylene glycol (mPEG) was covalently introduced onto GO surface via facile amidation mild process to give GO-mPEG. GO-mPEG was anchored on nanoporous SBA-15 and homogenously reduced in-situ to SBA-rGO-mPEG. XRD analysis confirmed successful synthesis of SBA-15 and cross-linked GO/rGO-mPEG on SBA-15 surface. Image analysis revealed the architecture of SBA-15 as porous 3-dimensional silica network and presence of interwoven/crosslinked thin-films of GO-mPEG on SBA-15 surface. EDX mapping/elemental analysis showed expected elements were present. FTIR and textural analysis revealed the presence of different functional groups and high surface area as well as porosity, respectively. Optimal molar ratio experiments showed that 0.5SBA-rGO-mPEG had the highest sorption capacity. The relatively large surface area, 3-dimensional nanoprous silica structure and excess of polyamide/amido-carbonic functional groups on nanocomposites were suited for adsorption of 17 beta-estradiol. Equilibrium time was 30 min and effect of pH on adsorption was negligible. Sorption kinetic process of SBA-rGO-mPEG suited the pseudosecond-order model and equilibrium data fitted both Freundlich and Langmuir models. Qm values of 57.1, 78.5, 102.6 and 192.3 mg/g was recorded for SBA-GO, 0.1SBA-rGO-mPEG, 0.25SBA-rGO-mPEG and 0.5SBA-rGO-mPEG, respectively. H-bond, hydrophobic and pi-pi interactions were the sorption mechanism of SBA-rGO-mPEG after detailed analysis of data. Adsorbents was regenerated/re-used after 4 cycles with high remediation from environmental/real water samples. (C) 2019 Elsevier Ltd. All rights reserved.
机译:药物对水的污染是一个全球性问题,其补救非常重要。为了克服这个问题,我们合成了具有多功能结合化学的超疏水纳米多孔3维有序纳米材料,可高效吸附雌激素(17β-雌二醇)。通过Tours方法合成氧化石墨烯(GO),并通过容易的酰胺化温和工艺将甲氧基醚聚乙二醇(mPEG)共价引入GO表面,得到GO-mPEG。 GO-mPEG锚定在纳米多孔SBA-15上,并就地同质还原为SBA-rGO-mPEG。 XRD分析证实SBA-15和SBA-15表面上交联的GO / rGO-mPEG的成功合成。图像分析表明,SBA-15的结构为多孔3维二氧化硅网络,并且在SBA-15表面上存在交织/交联的GO-mPEG薄膜。 EDX映射/元素分析表明存在预期的元素。 FTIR和结构分析表明分别存在不同的官能团,高表面积和孔隙率。最佳摩尔比实验表明0.5SBA-rGO-mPEG具有最高的吸附能力。相对较大的表面积,3维纳米级二氧化硅结构以及纳米复合材料上过量的聚酰胺/酰胺碳官能团适合于17β-雌二醇的吸附。平衡时间为30分钟,pH对吸附的影响可忽略不计。 SBA-rGO-mPEG的吸附动力学过程适合拟二阶模型,平衡数据符合Freundlich和Langmuir模型。 SBA-GO,0.1SBA-rGO-mPEG,0.25SBA-rGO-mPEG和0.5SBA-rGO-mPEG的Qm值分别记录为57.1、78.5、102.6和192.3 mg / g。详细分析数据后,H键,疏水和pi-pi相互作用是SBA-rGO-mPEG的吸附机理。经过4个循环后,吸附剂在环境/实际水样中得到了高度修复,并得到了再生/再利用。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号