...
首页> 外文期刊>Chemosphere >Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric fate in the initial new particle formation
【24h】

Gas phase transformation from organic acid to organic sulfuric anhydride: Possibility and atmospheric fate in the initial new particle formation

机译:从有机酸到有机硫酸酐的气相转化:初始新颗粒形成的可能性和大气命运

获取原文
获取原文并翻译 | 示例

摘要

New particle formation (NPF) process has been observed frequently in various environments and produces a large fraction of atmospheric aerosols. However, the chemical species participating in the nucleation as well as the corresponding nucleation mechanism in the atmosphere still remain ambiguous. Recent research by Leopold et al. shows that cycloaddition reaction of SO3 to carboxylic acids could contribute to the formation of organic sulfuric anhydride which would have lower vapor pressure compared with the corresponding carboxylic acid and hence kick-start new particle formation in the gas phase. In the present study, energy profile for the formation of 3-methyl-1,2,3-butanetricarboxylic sulfuric anhydride (MBTCSA) through the cycloaddition of SO3 to 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) has been investigated using computational methods. As a result, such a process would be effectively barrierless for one of the terminal carboxy group and has very low energy barriers for the other two carboxy groups (0.6 and 2.8 kcal/mol, respectively), indicating the whole process is a plausible gas phase pathway to MBTCSA formation. Furthermore, by evaluating the stability of the generated atmospheric clusters through topological and kinetic analysis, interaction between atmospheric nucleation precursor with MBTCSA is found to be more thermodynamically favourable and stronger than those with sulfuric acid and MBTCA which is identified from further-generation oxidation of a-pinene. Hence MBTCSA is speculated to be a potential participator in the initial new particle formation and the further particles growth. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在各种环境中经常观察到新的颗粒形成(NPF)过程,并会产生很大比例的大气气溶胶。但是,参与成核的化学物质以及大气中相应的成核机理仍然不明确。 Leopold等人的最新研究。结果表明,SO3与羧酸的环加成反应可能有助于有机硫酸酐的形成,与相应的羧酸相比,有机硫酸酐的蒸气压更低,因此在气相中引发了新的颗粒形成。在本研究中,通过将SO3环加成成3-甲基-1,2,3-丁三羧酸(MBTCA)形成3-甲基-1,2,3-丁三羧酸三酐(MBTCSA)的能量分布图使用计算方法进行调查。结果,该方法对于末端羧基中的一个羧基实际上是无障碍的,而对于另外两个羧基(分别为0.6和2.8 kcal / mol),其能量势垒非常低,表明整个过程是合理的气相MBTCSA形成的途径。此外,通过拓扑和动力学分析评估生成的大气团簇的稳定性,发现大气成核前体与MBTCSA之间的相互作用比对硫酸和MBTCA的相互作用具有更高的热力学优势和更强的相互作用。 -pine烯因此,MBTCSA被认为是最初的新颗粒形成和进一步颗粒生长的潜在参与者。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Chemosphere 》 |2018年第12期| 504-512| 共9页
  • 作者单位

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Chem & Chem Engn, Minist Educ China, Key Lab Cluster Sci, Beijing 100081, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Organic sulfuric anhydride; New particle formation; Reaction mechanism; Evaporation coefficient; Atmospheric nucleation precursor;

    机译:有机硫酸酐新颗粒形成反应机理蒸发系数大气成核前体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号