...
首页> 外文期刊>Chemosphere >Applicability study on the degradation of acetaminophen via an H_2O_2/PDS-based advanced oxidation process using pyrite
【24h】

Applicability study on the degradation of acetaminophen via an H_2O_2/PDS-based advanced oxidation process using pyrite

机译:黄铁矿基于H_2O_2 / PDS的高级氧化工艺降解对乙酰氨基酚的适用性研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

H2O2- and PDS-based reactions are two typical advanced oxidation processes (AOPs) with different adaptive pH ranges. However, the underlying mechanisms that caused the distinct applicability of these two AOPs have rarely been explored. Herein, a comparative study of H2O2/PDS-based AOPs employing pyrite as a catalyst to degrade acetaminophen (ACT) was reported. The poor ACT degradation in H2O2/pyrite under alkaline conditions was proven to be caused by a lack of (OH)-O-center dot production instead of by the weaker oxidation property of (OH)-O-center dot. The continuous exposure surface behavior induced by the intense acid-production reaction between PDS and pyrite prevented the coverage of iron-containing compounds on the pyrite surface. Therefore, the adaptive pH range in PDS/pyrite could extend from 4 to 10, in contrast to the narrow effective pH range of 4-6 in H2O2/pyrite. Oxidant consumption indicated that H2O2/pyrite possesses a higher oxidation efficiency than PDS/pyrite. The homogenous catalytic effect was non-negligible in PDS/pyrite, whereas heterogeneous catalytic oxidation dominated H2O2/pyrite under acidic conditions. The quenching experiment and electron spin resonance (ESR) spectroscopy demonstrated that the dominant radical species in H2O2/PDS-based AOPs via pyrite at a pH of 4 were (OH)-O-center dot and (OH)-O-center dot/SO4 center dot-, respectively, thus causing different degradation pathways of ACT. In addition, a higher proportion of S consumption was found in H2O2/pyrite, indicating that sulfur also plays a role during the catalytic reaction. The distinct surface reactions between pyrite and H2O2/PDS led to different water treatment applications. (C) 2018 Elsevier Ltd. All rights reserved.
机译:基于H2O2和PDS的反应是两个具有不同适应性pH范围的典型高级氧化过程(AOP)。但是,很少探讨导致这两个AOP明显不同的潜在机制。在本文中,对使用黄铁矿作为催化剂降解对乙酰氨基酚(ACT)的H2O2 / PDS基AOP进行了比较研究。事实证明,在碱性条件下,H2O2 /黄铁矿中ACT的不良降解是由(OH)-O-中心点生成不足引起的,而不是由(OH)-O-中心点氧化性能较弱引起的。 PDS与黄铁矿之间发生强烈的产酸反应引起的连续暴露表面行为阻止了含铁化合物在黄铁矿表面上的覆盖。因此,与H2O2 /黄铁矿中4-6的有效pH范围相比,PDS /黄铁矿中的自适应pH范围可以从4扩展到10。氧化剂消耗表明H 2 O 2 /黄铁矿比PDS /黄铁矿具有更高的氧化效率。 PDS /黄铁矿的均相催化作用不可忽略,而在酸性条件下,H2O2 /黄铁矿的非均相催化氧化作用占主导。淬灭实验和电子自旋共振(ESR)光谱表明,在pH为4时,通过黄铁矿在H2O2 / PDS基AOP中占优势的自由基种类为(OH)-O-中心点和(OH)-O-中心点/ SO4分别以中心点为中心,从而导致ACT的降解途径不同。另外,在H 2 O 2 /黄铁矿中发现较高比例的S消耗,表明硫在催化反应中也起作用。黄铁矿和H2O2 / PDS之间明显的表面反应导致了不同的水处理应用。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Chemosphere》 |2018年第12期|438-446|共9页
  • 作者单位

    Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China;

    Univ Hong Kong, Dept Civil Engn, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China;

    Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China;

    Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, 1239 Siping Rd, Shanghai 200092, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    AOPs; Pyrite; H2O2; PDS; Radical reaction mechanism; Acetaminophen;

    机译:AOPs;黄铁矿;H2O2;PDS;自由基反应机理;对乙酰氨基酚;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号