...
首页> 外文期刊>Chemistry - A European Journal >Thermal Activation of Methane and Ethene by Bare MO.+ (M=Ge, Sn, and Pb): A Combined Theoretical/Experimental Study
【24h】

Thermal Activation of Methane and Ethene by Bare MO.+ (M=Ge, Sn, and Pb): A Combined Theoretical/Experimental Study

机译:裸MO 。+ (M = Ge,Sn和Pb)对甲烷和乙烯的热活化:组合的理论/实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The thermal ion/molecule reactions (IMRs) of the Group 14 metal oxide radical cations MO.+ (M=Ge, Sn, Pb) with methane and ethene were investigated. For the MO.+/CH4 couples abstraction of a hydrogen atom to form MOH+ and a methyl radical constitutes the sole channel. The nearly barrier-free process, combined with a large exothermicity as revealed by density functional theory (DFT) calculations, suggests a fast and efficient reaction in agreement with the experiment. For the IMR of MO.+ with ethene, two competitive channels exist: hydrogen-atom abstraction (HAA) from and oxygen-atom transfer (OAT) to the organic substrate. The HAA channel, yielding C2H3. and MOH+ predominates for the GeO.+/ethene system, while for SnO.+ and PbO.+ the major reaction observed corresponds to the OAT producing M+ and C2H4O. The DFT-derived potential-energy surfaces are consistent with the experimental findings. The behavior of the metal oxide cations towards ethene can be explained in terms of the bond dissociation energies (BDEs) of MO+H and M+O, which define the hydrogen-atom affinity of MO+ and the oxophilicity of M+, respectively. Since the differences among the BDEs(MO+H) are rather small and the hydrogen-atom affinities of the three radical cations MO.+ exceed the BDE(CH3H) and BDE(C2H3H), hydrogen-atom abstraction is possible thermochemically. In contrast, the BDEs(M+O) vary quite substantially; consequently, the OAT channel becomes energetically less favorable for GeO.+ which exhibits the highest oxophilicity among these three group 14 metal ions.
机译:研究了14族金属氧化物自由基阳离子MO 。 + (M = Ge,Sn,Pb)与甲烷和乙烯的热离子/分子反应(IMR)。对于MO 。 + / CH 4 耦合一个氢原子的抽象以形成MOH + 和一个甲基构成唯一渠道。几乎无障碍的过程,再加上密度泛函理论(DFT)计算所揭示的高放热性,表明与实验相符的快速有效的反应。对于具有乙烯的MO 。 + 的IMR,存在两个竞争性渠道:氢原子从有机原子中提取(HAA)和氧原子向有机底物转移(OAT)。产生C 2 H 3 和MOH + 的HAA通道主要用于GeO 。 / sup> + /乙烯系统,而对于SnO 。 + 和PbO 。 + 观察到的主要反应对应于OAT产生M + 和C 2 H 4 O。 DFT衍生的势能表面与实验结果一致。金属氧化物阳离子对乙烯的行为可以用MO + H和M + O的键解离能(BDE)来解释,它们定义了氢MO + 的原子亲和力和M + 的亲氧性。由于BDEs(MO + H)之间的差异很小,并且三个自由基阳离子MO 。 + 的氢原子亲和力超过BDE(CH 3 H)和BDE(C 2 H 3 H)可以通过化学方法夺取氢原子。相反,BDEs(M + O)相差很大。因此,OAT通道在能量上不利于GeO 。 + ,这在这14个三族金属离子中具有最高的亲氧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号