首页> 外文期刊>Chemical Communications >Catalytic Electrochemistry Of A [nifese]-hydrogenase On Tio_2 And Demonstration Of Its Suitability For Visible-light Driven H_2 Production
【24h】

Catalytic Electrochemistry Of A [nifese]-hydrogenase On Tio_2 And Demonstration Of Its Suitability For Visible-light Driven H_2 Production

机译:[nifese]-加氢酶在Tio_2上的催化电化学及其在可见光驱动H_2生产中的适用性

获取原文
获取原文并翻译 | 示例
       

摘要

A [NiFeSe]-hydrogenase able to produce H_2 in the presence of O_2 forms the basis of a hybrid enzyme-TiO_2 nanoparticle system with a co-attached synthetic Ru photosensitiser for visible-light driven H_2 production at room temperature from neutral water under non-strictly anaerobic conditions on the bench.rnRenewable hydrogen is widely considered as a possible energy vector in the post-fossil fuel era, but there are major practical issues to resolve before a hydrogen economy becomes truly feasible, not least of which is the cheap and efficient production of H_2 from water, particularly using sunlight (artificial photosynthesis). From the physico-chemical angle, efforts have focused on Pt attached to semiconducting particles, but there is intense interest in identifying alternative catalysts, because Pt suffers from several drawbacks such as: (ⅰ) lack of selectivity (at low potentials it catalyses O_2 reduction at diffusion controlled rates), (ⅱ) poisoning by trace inhibitors (e.g., CO) which is difficult to reverse, and (ⅲ) high cost/limited resources, in particular considering large-scale applications.rnAn alternative approach is biological H_2 production by organisms expressing hydrogenases (H_2ases), which are iron-or ironickel-containing microbial enzymes that catalyse the reversible and selective interconversion of H_2 and 2H~+/2e~-. Here, there is a case for identifying H_2 producers among organisms that express [NiFe]-H_2ases rather than [FeFe]-H_2ases that are regarded as being more O_2 sensitive. We recently described studies of a [NiFeSe]-H_2ase (a subclass of [NiFe]-H_2ase containing a terminal selenocysteine coordinated to nickel at the [NiFe]-active site and three [4Fe4S]-clusters for intraprotein electron transfer) that is more active for H_2 production than normal [NiFe]-H_2ases yet should be able to function indefinitely in low levels of O_2. In this communication we have addressed this development in a practical context and demonstrate a rational photochemical H_2 cell that produces H_2 under visible light irradiation without resort to rigorous anaerobicity.
机译:能够在O_2存在下产生H_2的[NiFeSe]氢化酶构成了杂化酶TiO_2纳米粒子系统的基础,该体系具有共连接的合成Ru光敏剂,用于在室温下由中性水在非光催化条件下以可见光驱动H_2生产在后化石燃料时代,可再生氢被广泛认为是一种可能的能源载体,但是在氢经济真正成为现实之前,还有许多重要的实际问题需要解决,其中最重要的是廉价和高效由水生产H_2,特别是使用阳光(人工光合作用)。从物理化学的角度来看,研究工作集中在附着于半导体颗粒上的Pt上,但是人们对寻找替代催化剂的兴趣浓厚,因为Pt具有以下缺点:(ⅰ)缺乏选择性(在低电势下催化O_2还原) (ⅱ)难以逆转的痕量抑制剂(例如,CO)中毒,以及(ⅲ)高成本/有限的资源,特别是考虑到大规模应用。表达加氢酶(H_2ase)的生物,它们是铁或铁/镍的微生物酶,催化H_2和2H〜+ / 2e〜-的可逆和选择性相互转化。在这种情况下,需要在表达[NiFe] -H_2ase而不是被认为对O_2更加敏感的[FeFe] -H_2ase的生物体中识别H_2产生者。我们最近描述了[NiFeSe] -H_2ase([NiFe] -H_2ase的子类,该子类包含在[NiFe]-活性位点与镍配位的末端硒代半胱氨酸和三个用于蛋白质内电子转移的[4Fe4S]-簇)的研究。与正常的[NiFe] -H_2酶相比,H_2的活性高,但在低水平的O_2中应能无限期地发挥作用。在本交流中,我们已在实际环境中解决了这一问题,并演示了一种合理的光化学H_2细胞,该细胞可以在可见光照射下产生H_2,而无需使用严格的厌氧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号