首页> 外文期刊>Bulletin of Volcanology >A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan)
【24h】

A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan)

机译:布朗尼火山反复喷发模型:在三宅岛火山中的应用(日本)

获取原文
获取原文并翻译 | 示例
       

摘要

The definition of probabilistic models as mathematical structures to describe the response of a volcanic system is a plausible approach to characterize the temporal behavior of volcanic eruptions and constitutes a tool for long-term eruption forecasting. This kind of approach is motivated by the fact that volcanoes are complex systems in which a completely deterministic description of the processes preceding eruptions is practically impossible. To describe recurrent eruptive activity, we apply a physically motivated probabilistic model based on the characteristics of the Brownian passage-time (BPT) distribution; the physical process defining this model can be described by the steady rise of a state variable from a ground state to a failure threshold; adding Brownian perturbations to the steady loading produces a stochastic load-state process (a Brownian relaxation oscillator) in which an eruption relaxes the load state to begin a new eruptive cycle. The Brownian relaxation oscillator and Brownian passage-time distribution connect together physical notions of unobservable loading and failure processes of a point process with observable response statistics. The Brownian passage-time model is parameterized by the mean rate of event occurrence, μ, and the aperiodicity about the mean, α. We apply this model to analyze the eruptive history of Miyakejima volcano, Japan, finding a value of 44.2 (±6.5 years) for the μ parameter and 0.51 (±0.01) for the (dimensionless) α parameter. The comparison with other models often used in volcanological literature shows that this physically motivated model may be a good descriptor of volcanic systems that produce eruptions with a characteristic size. BPT is clearly superior to the Exponential distribution, and the fit to the data is comparable to other two-parameters models. Nonetheless, being a physically motivated model, it provides an insight into the macro-mechanical processes driving the system.
机译:将概率模型定义为描述火山系统响应的数学结构,这是表征火山喷发时间行为的一种可行方法,并且构成了长期喷发预测的工具。火山是一个复杂的系统,在该系统中,实际上不可能对喷发之前的过程进行完全确定的描述,因此激发了这种方法。为了描述复发性喷发活动,我们基于布朗通过时间(BPT)分布的特征应用了基于物理的概率模型。定义该模型的物理过程可以通过状态变量从基态到故障阈值的稳定上升来描述。将布朗扰动添加到稳定载荷会产生随机载荷状态过程(布朗弛豫振荡器),其中喷发会放松载荷状态以开始新的喷发周期。布朗弛豫振荡器和布朗通过时间分布将点过程不可观测的载荷和失效过程的物理概念与可观察到的响应统计联系在一起。布朗通过时间模型由事件发生的平均速率μ和关于平均值的非周期性α来参数化。我们应用该模型分析了日本三宅岛火山的喷发历史,发现μ参数的值为44.2(±6.5年),(无量纲的)α参数的值为0.51(±0.01)。与火山学文献中经常使用的其他模型的比较表明,这种以物理为动力的模型可能是火山系统的良好描述,这些火山系统会产生特征尺寸的喷发。 BPT明显优于指数分布,并且数据拟合度可与其他两个参数模型相比。但是,由于它是一种物理模型,因此可以深入了解驱动系统的宏观机械过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号