首页> 外文期刊>High temperature materials and processes >Thermal Barrier Coating System for Gas Turbine Application - A Review
【24h】

Thermal Barrier Coating System for Gas Turbine Application - A Review

机译:燃气轮机热障涂层系统的研究进展

获取原文
获取原文并翻译 | 示例
       

摘要

Ceramic coatings are refractory metal compounds deposited on substrates to reduce thermal loss and to protect components from high temperature. Thermal barrier coatings (TBC) are composite overlay of bond coat and ceramic coat on a superalloy substrate. Atomised deposition or splat deposition of fine semi-molten particle technique deposits thin coatings of brittle ceramic. Thermal and mechanical strains arising from service exposure require structural compliance tolerances. This is facilitated by brittle constituent deposition over a ductile substrate. Electron beam physical vapour deposition and plasma spray technique lead to a tortuous intergranular network of coating. Porous deposition technique is applied in all cases instead of cementation or continuous section thickness. Thermal barrier coating is inevitable in aerospace engine sections operating at limiting conditions of strains. Thermal barrier coatings help in protection of high temperature components for maximum utilisation of component lives, and maximum utilisation of energy by operating at optimum allowable temperature limits. Thermo mechanical behaviour of TBC is optimised by in-situ formation and transformation mechanisms of alumina from aluminium of substrate/bond coat and metastable tetragonal zirconia to stable tetragonal zirconia respectively at temperature of service. While the former produces a volumetric contraction, the latter produces volumetric expansion. In service the composite system provides auto-toughening effects in due course. An intergranular tortuous network of coating forms cracks on exposure of strain and the crack tip blunting forms cubic allotropy from metastable tetragonal phase, resulting in an increase in toughness due to elimination of c/a ratio. However, a prolonged exposure forms localised spallation zones, which are initiated by volumetric expansion stresses associated with nickel enrichment of thermally grown oxides (TGO) at bond coat/ceramic coat interface, and auto-sintering. Bond coat is applied to produce mechanical adherence and stress relaxation effects. Generally M-CrAlY families of bond coating alloys are used for this purpose. Exposure to operating/test temperature produces thermally grown oxides (TGO) at interface. This occupies an intermediate zone in response to property interactions. TGO mainly consists of alumina being catalyzed by chromia and adhered by yttria. Active research is going on to study the mechanisms of auto sintering and auto-toughening of TBC. Work is in progress to explore how to decrease thermal expansion mismatch stresses by application of composite coatings made from functionally graded materials, microlaminated, and multilayered ceramic/ ceramic or metallic/ceramic or metallic/metallic coatings. The application of laser scaling or remelting to reduce porosity of free surface and to increase glaze are other avenues to reduce diffusion of reactive gases and to increase internal heat transfer respectively. The former increases life of bond coat/substrate, whereas the latter increases energy efficiency by maximum utilisation of heat. The main unsolved problem is spallation of ceramic coating, which is cohesively induced in either side of interface and spread out to interfaces of adhesion. TBC increases life more than two-fold for cases of aerospace engines. However localised spallation may rise by high temperature corrosion of bond coat/substrate, TGO stresses, gaseous/liquid contaminant diffusion/ impregnation through tolerance networking of voids, and erosion.
机译:陶瓷涂层是沉积在基材上的难熔金属化合物,可减少热损失并保护组件免受高温侵害。热障涂层(TBC)是粘结涂层和陶瓷涂层在高温合金基材上的复合涂层。精细半熔融颗粒技术的雾化沉积或飞溅沉积可沉积出脆性陶瓷薄涂层。因使用暴露而产生的热和机械应变要求结构符合性公差。通过在韧性基底上的脆性成分沉积来促进这一点。电子束物理气相沉积和等离子喷涂技术导致涂层的曲折晶间网络。在所有情况下均采用多孔沉积技术代替胶结或连续的断面厚度。在应变的极限条件下运行的航空发动机部分中,不可避免要采用隔热涂层。隔热涂层通过在最佳允许温度极限下运行,有助于保护高温组件,以最大限度地利用组件寿命,并最大限度地利用能量。通过在工作温度下分别将氧化铝从基体/粘结层的铝和亚稳四方氧化锆转变为稳定的四方氧化锆,来优化TBC的热力学行为。前者产生体积收缩,而后者产生体积膨胀。在使用中,复合系统会适时提供自动增韧效果。涂层的晶间曲折网络在应变暴露时形成裂纹,裂纹尖端钝化而形成亚稳四方相的立方同素异形体,由于消除了c / a比而导致韧性提高。但是,长时间的暴露会形成局部剥落区,这是由与粘结涂层/陶瓷涂层界面处的热生长氧化物(TGO)的镍富集相关的体积膨胀应力和自动烧结引起的。施加粘结层可产生机械粘附力和应力松弛效果。通常,M-CrAlY系列粘结涂层合金用于此目的。暴露于操作/测试温度会在界面处产生热生长氧化物(TGO)。响应于属性交互,这占据了一个中间区域。 TGO主要由氧化铬催化并被氧化钇粘附的氧化铝组成。正在积极研究TBC的自动烧结和自动增韧机制。正在探索如何通过应用由功能梯度材料制成的复合涂层,微层压以及多层陶瓷/陶瓷或金属/陶瓷/金属或金属/金属涂层来降低热膨胀失配应力的工作。采用激光除垢或重熔以减少自由表面的孔隙率并增加釉料是分别减少反应性气体扩散和增加内部传热的其他途径。前者增加了粘结涂层/基材的寿命,而后者通过最大程度地利用热量提高了能源效率。主要未解决的问题是陶瓷涂层的剥落,它是在界面的任一面内聚诱导并扩散到粘合界面。对于航空发动机而言,TBC可使寿命延长两倍以上。但是,由于粘结层/基材的高温腐蚀,TGO应力,气孔/液体污染物扩散/通过空隙的容差网络浸渍和腐蚀,局部剥落可能会增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号