首页> 外文期刊>Вестник Московского авиационного института >МЕТОДИКА ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО УСТАНОВОЧНОГО УГЛА И УДЛИНЕНИЯ МЯГКОГО КРЫЛА СО СТРОПНОЙ ПОДДЕРЖКОЙ
【24h】

МЕТОДИКА ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО УСТАНОВОЧНОГО УГЛА И УДЛИНЕНИЯ МЯГКОГО КРЫЛА СО СТРОПНОЙ ПОДДЕРЖКОЙ

机译:确定带有扭转支撑的软翼最佳安装角度和伸展度的方法

获取原文
获取原文并翻译 | 示例
           

摘要

While developing paragliders and gliding parachutes many issues on the optimal selection of the airfoil, its relative thickness and twist over the span, the law of the wing arc distribution and its shape in the sweep, length and slinging arise. Selection criteria for of some of these parameters may be transferred practically without changing the methods, rather explicitly elaborated for the historically earlier appeared aerial vehicles with balancing by the payload weight (hang-gliders). However, the paraglider, also related to the flying vehicles balanced by the load, has some specifics, since it employs momentless carrying shell. The parameters estimates of the aerial vehicles with the soft wing and sling support with various working-out degree are presented in [5-19]. However, the issue of working-out the simple and vivid analytical technique for obtaining optimal characteristics of the above said aerial vehicles, which does not employ iteration approximating and general empirical assumptions, still remains open. The article is devoted to the study of some aspects of this technique. The author proposes to perform the calculation in the following sequence: 1. It is assumed, that in the assigned flight mode, the wing has the required angle of attack. Aerodynamic coefficients of the airfoil С_(xp) and C_(ya) for the specified mode are being elected. 2. Based of the obtained coefficients, the glading angle is calculated according to the expression proposed in the article. Then, with account for the obtained gliding angle, the gliding speed is calculated using the following expression. 3. After selecting several options of the wing profiles and aspect ratio the comparative calculation of the flight quality is performed. With too small values of the wing lift coefficient, the main contribution to the resistance is brought by the air-dropped cargo and slings. If the С_(ya) is too large, the inductive resistance becomes prevalent. Consequently, for each wing aspect ratio, the system slings and cargo type it is possible to determine the optimum carrying capacity of the designed wing profile. Conversely, it is possible to determine the optimal aspect ratio with given the remaining design characteristics. 4. After the final selection of the profile, by the center of pressure on the wing MAC (middle aerodynamic chord) is determined. Further, with account for the obtained coordinates of the center of pressure on the MAC, the coordinate of the wing suspension relative to the load center of gravity is determined by the proposed formula. The article demonstrates also the independence of the of self-balancing wings angle of attack from the thrust magnitude. This conclusion is based on the fact, that for the angle of the slant of the slings relative to the center of the pressure of the MAC in the horizontal flight mode under thrust and in the gliding mode, identical equations were obtained. In [1] the algorithm for static parameters calculation of the motor flight vehicle with a soft wing is presented. In the presented article it was expanded for the gliding descent mode.%Даны выражения для угла и скорости планирования систем с мягким крылом в зависимости от их аэродинамических и конструктивных коэффициентов. Показано наличие оптимального удлинения для выбранного профиля крыла и вида стропной системы. Получены выражения для определения координаты подвеса крыла относительно центра тяжести груза, подвешенного к свободным концам, в моторном и безмоторном полете. Показана независимость угла атаки самобалансирующихся крыльев от величины тяги.
机译:在开发滑翔伞和滑翔伞时,许多问题涉及机翼的最佳选择,翼型的相对厚度和跨度扭转,机翼弧形分布规律及其在后掠,长度和吊索上的形状。这些参数中的一些参数的选择标准实际上可以在不改变方法的情况下进行转移,而对于历史上较早出现的,具有有效载荷重量平衡的飞行器(悬挂式滑翔机)进行了明确阐述。但是,滑翔伞也与受负载平衡的飞行器有关,因为它采用了不动摇的承载壳,所以有一些细节。在[5-19]中给出了具有不同锻炼度的具有软翼和悬索支撑的飞行器的参数估计。然而,仍未解决尚未获得迭代近似和一般经验假设的用于获得上述飞行器的最佳特性的简单生动的分析技术的问题。本文专门研究此技术的某些方面。作者建议按以下顺序执行计算:1.假定在指定的飞行模式下,机翼具有所需的迎角。选择指定模式的翼型的空气动力学系数С_(xp)和C_(ya)。 2.根据获得的系数,根据文章中提出的表达式计算空转角。然后,考虑到所获得的滑动角,使用以下表达式计算滑动速度。 3.在选择了机翼轮廓和纵横比的几个选项之后,进行了飞行质量的比较计算。机翼升力系数的值太小时,空投的货物和吊索带给阻力的主要贡献。如果С_(ya)太大,则感应电阻会变得很普遍。因此,对于每个机翼纵横比,系统吊索和货物类型,可以确定设计机翼轮廓的最佳承载能力。相反,可以在给定其余设计特征的情况下确定最佳纵横比。 4.在最终选择轮廓之后,通过机翼MAC(中间空气动力弦)上的压力中心确定。此外,考虑到在MAC上获得的压力中心坐标,可以通过提出的公式确定机翼悬架相对于负载重心的坐标。本文还论证了自平衡机翼迎角与推力大小之间的独立性。该结论基于以下事实:在水平飞行模式下,在推力和滑行模式下,吊索的倾斜角度相对于MAC压力中心的角度得到了相同的方程式。在[1]中,提出了一种计算软翼机动飞行器静态参数的算法。在提出这条扩大了滑翔降落模式。%Данывыражениядляуглаискоростипланированиясистемсмягкимкрыломвзависимостиотихаэродинамическихиконструктивныхкоэффициентов。 Показаноналичиеоптимальногоудлинениядлявыбранногопрофилякрылаивидастропнойсистемы。 Полученывыражениядляопределениякоординатыподвесакрылаотносительноцентратяжестигруза,подвешенногоксвободнымконцам,вмоторномибезмоторномполете。 Показананезависимостьуглаатакисамобалансирующихсякрыльевотвеличинытяги。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号