首页> 外文期刊>Building Services Engineering Research & Technology >Modelling water trap seal boundary conditions in building drainage systems: Computational fluid dynamics analysis of unsteady friction to improve accuracy
【24h】

Modelling water trap seal boundary conditions in building drainage systems: Computational fluid dynamics analysis of unsteady friction to improve accuracy

机译:建筑排水系统中集水器密封件边界条件的建模:非定常摩擦的计算流体动力学分析,以提高精度

获取原文
获取原文并翻译 | 示例
           

摘要

The safe removal of disease-carrying human waste is the objective of all sanitation systems and the limiting of air pressure transients within the system remains a significant part of current codes and regulations. The water trap seal offers fundamental protection and is the system's sole barrier between the public sewer network and habitable space inside a building. Modelling water trap seal responses to air pressure fluctuations offers an opportunity to analyse whole system performance, but the quality of the data depends on the accuracy of the modelling technique and that of the defining inputs. AIRNET, a ID Method of Characteristics based model, enables rapid whole system testing; however, the present boundary condition for the water trap seal within the model is based solely on steady state conditions, ignoring system dynamics. Computational fluid dynamics offers an opportunity to numerically evaluate the flow patterns within the trap seal in response to applied air pressure transients. This research confirms the importance of the rate of rise, and hence frequency of air pressure transients incident on water trap seals and relates this to potential vulnerabilities of different device geometries, particularly the ratio between inner and outer wall length. The research led to the development of a dynamic velocity decrement model encapsulating unsteady friction and separation losses linked to device geometry for the first time. The development of a frequency-dependent internal energy term △v, suitable for inclusion in AIRNET provides the capability to predict more realistic water trap response to air pressure transients over a range of air pressure transient frequencies likely to cause problems: I Hz to 8 Hz. Practical application: Whole system modelling can greatly improve the ability of design engineers to fully simulate the operation of a building drainage system in a realistic way. The work described in this paper improves the accuracy of whole system models by evaluating water dynamic responses to air pressure transients using a range of techniques including computational fluid dynamics and more traditional ID finite difference method of characteristics models. The work also paves the way for more robust evaluation of building drainage products through in-depth investigation of the fluid mechanics associated with their operation.
机译:安全清除携带疾病的人类废物是所有卫生系统的目标,并且限制系统内的气压瞬变仍然是当前法规的重要组成部分。疏水阀密封件提供了基本的保护,是系统在公共下水道网络和建筑物内部可居住空间之间的唯一屏障。对集水器密封件对气压波动的响应进行建模提供了分析整个系统性能的机会,但是数据的质量取决于建模技术和定义输入的准确性。 AIRNET是基于特征的ID方法模型,可以快速进行整个系统测试;但是,模型中集水器密封件的当前边界条件仅基于稳态条件,而忽略了系统动力学。计算流体动力学响应于施加的空气压力瞬变提供了一个机会,以数字方式评估捕集阱密封件内的流动模式。这项研究证实了上升速度的重要性,因此也证实了入射在集水器密封件上的气压瞬变的频率,并将其与不同设备几何形状的潜在脆弱性相关,尤其是内外壁长度之比。该研究导致了动态速度递减模型的开发,该模型首次封装了与设备几何形状相关的非稳态摩擦和分离损耗。适用于AIRNET的与频率相关的内部能量项△v的发展提供了预测在可能引起问题的一系列气压瞬变频率范围内更逼真的集水器对气压瞬变的响应的能力。 。实际应用:整个系统建模可以大大提高设计工程师以逼真的方式完全模拟建筑物排水系统运行的能力。本文所述的工作通过使用包括计算流体动力学和更传统的ID特征模型有限差分法在内的一系列技术来评估水对气压瞬变的动态响应,从而提高了整个系统模型的准确性。这项工作还通过对与排水相关的流体力学进行深入研究,为对建筑物排水产品进行更可靠的评估铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号