首页> 外文期刊>Building and Environment >Numerical simulation, PIV measurements and analysis of air movement influenced by nozzle jets and heat sources in underground generator hall
【24h】

Numerical simulation, PIV measurements and analysis of air movement influenced by nozzle jets and heat sources in underground generator hall

机译:地下发电机大厅受喷嘴和热源影响的空气流动的数值模拟,PIV测量和分析

获取原文
获取原文并翻译 | 示例
           

摘要

A research project was undertaken, using Computational Fluid Dynamic (CFD) numerical simulations and Particle Image Velocimetry (Ply) experimental techniques, to investigate air movement influenced by nozzle jets and heat sources in large generator hall of underground hydropower station. The interaction between supply nozzle air jet (inertia force) and thermal plume from heat source (thermal buoyancy) was studied under the design heat source and five different nozzle jet modes: Case1 = V/V-0 = 0.5, Case2 = V/V-0 = 0.75, Case3 = V/V-0 = 1, Case4 = V/V-0 = 1.25 and Case5 = V/V-0 = 1.5 (V is the actual velocity of the nozzle jets, V-0 is the design nozzle jet velocity). The air distribution was assessed based on the evaluation indexes. The accuracy and reliability of the CFD prediction was verified by the theoretical formula and PIV experiment. The results show that the first three cases (Ar = 0.00048) could meet the requirements of industry standards. After comparing with Case1 and Case2, Case3's velocity uniformity coefficient can be reduced by 24.96% and 13.63%; temperature uniformity coefficient can be decreased by 5.10% and 3.77%; energy efficiency coefficient can be raised by 22.61% and 6.83%; the average value of Air Diffusion Performance Index can be raised by 34.51% and 3.98% respectively. It is found that a larger jets velocity does not always ensure better replacement of the indoor air, and vice versa.
机译:利用计算流体动力学(CFD)数值模拟和粒子图像测速(Ply)实验技术进行了一项研究项目,以研究地下水电站大型发电机大厅中受喷嘴射流和热源影响的空气运动。在设计热源和五种不同的喷嘴喷射模式下,研究了供应喷嘴空气射流(惯性力)与来自热源的热羽流(热浮力)之间的相互作用:案例1 = V / V-0 = 0.5,案例2 = V / V -0 = 0.75,Case3 = V / V-0 = 1,Case4 = V / V-0 = 1.25和Case5 = V / V-0 = 1.5(V是喷嘴射流的实际速度,V-0是设计喷嘴射流速度)。根据评估指标评估空气分布。理论公式和PIV实验验证了CFD预测的准确性和可靠性。结果表明,前三种情况(Ar <= 0.00048)可以满足行业标准的要求。与Case1和Case2比较后,Case3的速度均匀性系数可分别降低24.96%和13.63%;温度均匀性系数可分别降低5.10%和3.77%;能效系数可分别提高22.61%和6.83%;空气扩散性能指数的平均值可以分别提高34.51%和3.98%。发现较大的射流速度并不总是确保更好地替代室内空气,反之亦然。

著录项

  • 来源
    《Building and Environment》 |2018年第3期|16-31|共16页
  • 作者单位

    Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Xian 710055, Shaanxi, Peoples R China;

    Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Xian 710055, Shaanxi, Peoples R China;

    Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Xian 710055, Shaanxi, Peoples R China;

    Xian Univ Architecture & Technol, Sch Environm & Municipal Engn, Xian 710055, Shaanxi, Peoples R China;

    China Northwest Architecture Design & Res Inst Co, Shanghai, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ventilation; Air distribution; CFD; PIV; Underground hydropower station;

    机译:通风;空气分配;CFD;PIV;地下水电站;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号