首页> 外文期刊>Building and Environment >An explainable one-dimensional convolutional neural networks based fault diagnosis method for building heating, ventilation and air conditioning systems
【24h】

An explainable one-dimensional convolutional neural networks based fault diagnosis method for building heating, ventilation and air conditioning systems

机译:基于可解释的基于型号的建筑加热,通风和空调系统的故障诊断方法

获取原文
获取原文并翻译 | 示例
       

摘要

Due to the frequently changed outdoor weather conditions and indoor requirements, heating, ventilation and air conditioning (HVAC) experiences faulty operations inevitably throughout its lifespan. Therefore, it is important to monitor and diagnose HVAC fault operations. Recently, deep learning methods have attracted more attentions for their guarantee of better diagnosis performance under various system configurations and operating conditions. However, these methods are black-box models which though highly accurate for fault diagnosis but are extremely hard to explain. To overcome the disadvantage of poor interpretability of deep learning black-box models, this study therefore proposes a novel explainable deep learning based fault diagnosis method that is suitable for HVACs. To maintain HVAC operational information and variable locations of all chiller input data samples, proposed method is established with three characteristics: 1) the pooling layer is excluded, 2) the size of convolution filter kernel is set as 1, and 3) use softsign as an activation function. Considering the resulting impacts of HVAC faults on system operating variables, a new Absolute Gradient-weighted Class Activation Mapping (Grad-Absolute-CAM) method is proposed to visualize the fault diagnosis criteria and make the model explainable by providing the fault-discriminative information. The proposed method is validated using fault experimental dataset of a typical building HVAC system (i.e., chiller) from the ASHRAE research project 1043 (RP-1043). The fault diagnosis accuracy is over 98.5% for seven chiller faults. Results indicates that it is capable of interpreting the model work mechanism by activation feature maps and explaining the fault diagnosis criteria by Grad-Absolute-CAM.
机译:由于经常改变了室外天气条件和室内要求,加热,通风和空调(HVAC)在整个寿命期间都经历了缺陷的操作。因此,重要的是要监控和诊断HVAC故障操作。最近,深入学习方法引起了更多的注意,以便在各种系统配置和操作条件下保证更好的诊断性能。然而,这些方法是黑盒式型号,但对于故障诊断非常准确但极难解释。为了克服深度学习黑匣子型号差不可易受解释性的缺点,这项研究提出了一种新颖的可解释的基于深度学习的故障诊断方法,适用于HVACS。为了维护所有冷却器输入数据样本的HVAC操作信息和可变位置,建议的方法建立了三个特性:1)汇集层被排除在外,2)卷积滤波器内核的大小设置为1,3)使用SoftSign as激活功能。考虑到HVAC故障对系统操作变量产生的影响,提出了一种新的绝对梯度加权类激活映射(Grad-Absolute-CAM)方法,以可视化故障诊断标准,并通过提供故障辨别信息来使模型可说明。所提出的方法是使用来自Ashrae研究项目1043(RP-1043)的典型建筑HVAC系统(即冷却器)的故障实验数据集进行验证。七个冷却器断层的故障诊断精度超过98.5%。结果表明它能够通过激活特征映射来解释模型工作机制,并通过Grad-Absol-CAM解释故障诊断标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号