...
首页> 外文期刊>Building and Environment >Numerical investigations of Re-independence and influence of wall heating on flow characteristics and ventilation in full-scale 2D street canyons
【24h】

Numerical investigations of Re-independence and influence of wall heating on flow characteristics and ventilation in full-scale 2D street canyons

机译:全尺寸2D街道峡谷流动特性与通风影响的重新独立性和影响的数值研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Validated by wind tunnel data, this study numerically investigates the integrated impacts of wind and thermal buoyancy on urban turbulence, ventilation and pollutant dispersion in full-scale 2D deep street canyons (aspect ratio AR = H/W = 3 and 5, W = 24 m). Isothermal urban airflows for such deep street canyons can be Reynoldsnumber-independent when reference Reynolds number (Re) exceeds the critical Re (Re-c similar to 10(6),10(7) when AR = 3, 5), i.e. AR = 5 experiences two main vortices and one-order smaller NEV* (similar to 10(-3), the normalized net escape velocity) than AR = 3 with a single main vortex (NEV*similar to 10(-2)).With sufficiently large Re (Re Re-c) and the same air-wall temperature difference (Ri = 2.62, 4.36 when AR = 3, 5), four uniform wall heating patterns were considered, including leeward-wall heating (L-H), windward-wall heating (W-H), ground heating (G-H), and all-wall heating (A-H). Various indicators were adopted to evaluate street ventilation and pollutant dilution capacity (e.g. age of air (tau,s), NEV*, pollutant transport rates (PTR)). Full-scale wall heating produces a strong upward near-wall buoyancy force, which significantly influences flow patterns and improves street ventilation for most cases. When AR = 3, L-H strengthens the single-vortex airflow. When AR = 5, L-H converts the isothermal double vortices into a single-clockwise vortex. For both ARs, W-H reverses the main clockwise vortex to an enhanced counterclockwise one, moreover G-H and A-H cause a more complicated multi-vortex pattern than isothermal cases. Overall, when AR = 3, L-H and W-H increase NEV* by 68% and 40% than the isothermal case. When AR = 5, four wall heating patterns all raise NEV* considerably (by 150%-556%). For both ARs, the L-H, W-H and A-H amplify the contribution of mean flows on removing pollutants but reduce that by turbulent diffusion compared with isothermal cases.
机译:通过风洞数据验证,本研究对全级2D深街峡谷(纵横比AR = H / W = 3和5,W = 24,数值研究了风和热浮力对城市湍流,通风和污染物分散体的综合影响,纵横比街峡谷(纵横比AR = H / W = 3,W = 24 m)。当参考雷诺数(RE)超过临界RE(RE-C时,当AR = 3,5)时,等温街道峡谷的等温城市气流可以是独立的reynoldsnumber - 独立于独立的5经历两个主要涡旋和一次较小的nev *(类似于10(-3),归一化净偏移速度),比Ar = 3具有单个主涡流(Nev *类似于10(2))。充分大Re(Re> Re-C)和相同的空腹温差(Ri = 2.62,4.36,当AR = 3,5),被认为是四个均匀的壁加热图案,包括背风壁加热(LH),迎风 - 壁加热(WH),地面加热(GH)和全壁加热(AH)。采用各种指标来评估街道通风和污染物稀释能力(例如,空气(TAU,S),NEV *,污染物运输率(PTR))。全尺寸壁炉产生强大的向上靠近墙面浮力力,这显着影响了流动模式并为大多数情况提高了街道通风。当AR = 3时,L-H加强单涡流气流。当AR = 5时,L-H将等温双涡旋转换为单一顺时针涡旋。对于两个ARS,W-H将主顺时针涡旋逆转到增强的逆时针,而G-H和A-H导致比等温案例更复杂的多涡模式。总体而言,当AR = 3时,L-H和W-H增加NEV *比等温案例增加68%和40%。当AR = 5时,四个壁加热模式全部抬高NEV *大大提高(150%-556%)。对于ARS,L-H,W-H和A-H扩增平均流量对除去污染物的贡献,而是通过与等温案例相比,通过湍流扩散来降低。

著录项

  • 来源
    《Building and Environment》 |2021年第2期|107510.1-107510.20|共20页
  • 作者单位

    Sun Yat Sen Univ Sch Atmospher Sci Guangdong Prov Key Lab Climate Change & Nat Disas Guangzhou Peoples R China;

    Sun Yat Sen Univ Sch Atmospher Sci Guangdong Prov Key Lab Climate Change & Nat Disas Guangzhou Peoples R China|Sun Yat Sen Univ Key Lab Trop Atmosphere Ocean Syst Minist Educ Zhuhai 519000 Peoples R China;

    Sun Yat Sen Univ Sch Atmospher Sci Guangdong Prov Key Lab Climate Change & Nat Disas Guangzhou Peoples R China|Univ Gavle Dept Bldg Engn Energy Syst & Sustainabil Sci S-80176 Gavle Sweden;

    Sun Yat Sen Univ Sch Atmospher Sci Guangdong Prov Key Lab Climate Change & Nat Disas Guangzhou Peoples R China|Hong Kong Polytech Univ Dept Bldg Serv Engn Hong Kong Peoples R China;

    Univ Gavle Dept Bldg Engn Energy Syst & Sustainabil Sci S-80176 Gavle Sweden;

    Univ Gavle Dept Bldg Engn Energy Syst & Sustainabil Sci S-80176 Gavle Sweden;

    Univ Gavle Dept Bldg Engn Energy Syst & Sustainabil Sci S-80176 Gavle Sweden;

    Univ Gavle Dept Bldg Engn Energy Syst & Sustainabil Sci S-80176 Gavle Sweden;

    Sun Yat Sen Univ Sch Atmospher Sci Guangdong Prov Key Lab Climate Change & Nat Disas Guangzhou Peoples R China|Sun Yat Sen Univ Key Lab Trop Atmosphere Ocean Syst Minist Educ Zhuhai 519000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    2D deep street canyon; Reynolds number-independence; Buoyancy effect; Street ventilation; Computational fluid dynamics (CFD); Net escape velocity;

    机译:2D Deep Street峡谷;Reynolds号独立;浮力效果;街道通风;计算流体动力学(CFD);净逃生速度;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号