...
首页> 外文期刊>Building and Environment >Design and modelling of dust capturing system in thermally stratified flowing conditions
【24h】

Design and modelling of dust capturing system in thermally stratified flowing conditions

机译:灰尘捕获系统在热分流流动条件下的设计与建模

获取原文
获取原文并翻译 | 示例

摘要

An improved understanding of the spreading and deposition of particles in a thermally buoyant flow environment i.e. melting hall is a key prerequisite to plan new strategies for dust capturing and reduced diffuse emissions. Accurate modeling of dust spreading and deposition requires accurate prediction of turbulence, particles dynamics, and particle-flow interactions. Widely used Reynolds-averaged Navier-Stokes (RANS) turbulence model, such as k-epsilon model, have shortcomings when modeling transient flow phenomena in thermally buoyant flow conditions. To overcome this shortcoming, a filtered VLES model (Very Large Eddy Scale model) have been applied where turbulent structures larger than a given filter size (typically grid size) is captured by the governing flow equations and smaller structures are modelled with a modified filtered k-epsilon model. This modeling approach provides more details description of the stratified flow and small turbulence structures. Both Drift-Flux Model (DFM) in a Eulerian framework and discrete phase model (DPM) in a Lagrangian framework have been applied to model the particle phase. Three coupled modelling approaches VLES-DPM, k-epsilon-DPM, and VLES-DFM are applied to understand the dust spreading and deposition. These methods are also used for designing a dust capturing system. The parameters which influence the dust capturing efficiency are also identified. The result from these three approaches are compared and the study showed that the VLES-DFM produces similar results to the VLES-DPM with lower computational time. Furthermore, the studies show that dust capturing efficiency depends on hood shape, particle size, particle density, hall-wind, and suction rate.
机译:改进了对热潮流量环境中颗粒的扩散和沉积的理解,即熔化馆是规划灰尘捕获和减少漫射排放的新策略的关键先决条件。精确建模的灰尘扩散和沉积需要精确地预测湍流,粒子动力学和粒子流量相互作用。广泛使用的雷诺平均天Navier-Stokes(RAN)湍流模型,例如K-EPSILON模型,当在热浮动流动条件下进行瞬态流动现象时具有缺点。为了克服这种缺点,已经应用了过滤器的VLES模型(非常大的涡刻模型),其中通过控制流量方程捕获大于给定滤波器大小的湍流结构(通常网格尺寸),并且用修改过滤的k模拟较小的结构的较小结构-epsilon模型。该建模方法提供了更多细节描述分层流动和小湍流结构。 Lagrangian框架中的欧拉框架和离散相模型(DPM)中的漂移通量模型(DPM)都已应用于模拟粒子阶段。三种耦合建模方法Vles-DPM,K-EPSILON-DPM和VLES-DFM应用于了解灰尘扩散和沉积。这些方法还用于设计灰尘捕获系统。还识别了影响灰尘捕获效率的参数。比较这三种方法的结果,研究表明,VLES-DFM与具有较低计算时间的VLES-DPM产生类似的结果。此外,研究表明,灰尘捕获效率取决于罩形状,粒度,颗粒密度,霍尔风和吸力率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号