首页> 外文期刊>British Ceramic Transactions >Modelling of fused cast alumina refractory
【24h】

Modelling of fused cast alumina refractory

机译:熔铸氧化铝耐火材料的建模

获取原文
获取原文并翻译 | 示例
       

摘要

Finite difference computer modelling of a 2D cast mould insulation annealing system (CMIA) was used to investigate the temperature gradient and thermal stress distribution during cooling of a fused cast ,-Al2O3 refractory. It was found that, of the various materials comprising the system, the mould material has the largest influence on the temperature gradient and thermal stress distribution, particularly at the beginning of cooling. The insulation layer has a large influence over the whole cooling cycle. The influence of the annealing layer mainly occurs in the later stage of cooling. As the thermal conductivity of any layer in the CMIA system increases, the peak temperature gradient and peak thermal stress in the cast increase rapidly, and move to a lower temperature region. This is obvious in the case where all the layers except the cast are of the same material. As the thermal conductivity of the mould in the cast mould system increases, the peak temperature gradient increases rapidly and moves to a lower temperature region until a maximum occurs at about 1310°C. The largest temperature gradient and thermal stress, therefore, appear in the temperature range 1310 to 1580°C for cooling fused cast ,-Al2O3 refractory. An optimum thickness exists for any layer in the CMIA system to give minimum temperature gradient and thermal stress. Deviation from the optimum thickness leads to proportionate increases in the temperature gradient and thermal stress. In addition, optimum thicknesses are related to each other, and also to the size of the cast. This is also obvious in the case where the system, except for the cast, consists of the same material. The temperature gradient is proportional to (xr /dx )(yrr /dy ) for a cast mould system. A second peak in temperature gradient, in addition to a major peak in the high temperature region, appears below 1580°C, and is closely related to the thickness of each layer in the system. The second peak can be eliminated if the thickness of each layer in the system is optimum, and its elimination would decrease the possibility of cracks forming in the cast.
机译:利用二维铸造模具绝缘退火系统(CMIA)的有限差分计算机模型研究了熔融铸件-Al 2 O 3 冷却过程中的温度梯度和热应力分布。子>耐火的。已经发现,在构成系统的各种材料中,模具材料对温度梯度和热应力分布的影响最大,特别是在冷却开始时。隔热层对整个冷却周期影响很大。退火层的影响主要发生在冷却的后期。随着CMIA系统中任何层的热导率增加,铸件中的峰值温度梯度和峰值热应力会迅速增加,并移至较低的温度区域。在除浇铸件以外的所有层都使用相同材料的情况下,这是显而易见的。随着铸模系统中铸模的热导率的增加,峰值温度梯度会迅速增加并移至较低的温度区域,直到在约1310°C出现最大值。因此,用于冷却熔融铸造的-Al 2 O 3 耐火材料的温度梯度和热应力最大,出现在1310至1580°C的范围内。 CMIA系统中任何层都存在最佳厚度,以提供最小的温度梯度和热应力。偏离最佳厚度会导致温度梯度和热应力成比例增加。另外,最佳厚度彼此相关,并且还与铸件的尺寸有关。在除铸件以外的系统由相同材料组成的情况下,这也很明显。温度梯度与(x r / d x )(y r r / d y )用于铸造模具系统。除了高温区域中的一个主要峰外,温度梯度的第二个峰出现在1580°C以下,并且与系统中各层的厚度密切相关。如果系统中各层的厚度最佳,则可以消除第二个峰值,并且消除第二个峰值将减少铸件中形成裂纹的可能性。

著录项

  • 来源
    《British Ceramic Transactions》 |1999年第2期|62-70|共9页
  • 作者

    Wang T-j.;

  • 作者单位

    The China Building Materials Academy, The China Building Materials Academy, Guan Zhuang, East Suburb, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号