首页> 外文期刊>BioScience >Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems
【24h】

Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems

机译:陆地生态系统采用更多极端降水制度的后果

获取原文
获取原文并翻译 | 示例
           

摘要

Amplification of the hydrological cycle as a consequence of global warming is forecast to lead to more extreme intra-annual precipitation regimes characterized by larger rainfall events and longer intervals between events. We present a conceptual framework, based on past investigations and ecological theory, for predicting the consequences of this underappreciated aspect of climate change. We consider a broad range of terrestrial ecosystems that vary in their overall water balance. More extreme rainfall regimes are expected to increase the duration and severity of soil water stress in mesic ecosystems as intervals between rainfall events increase. In contrast, xeric ecosystems may exhibit the opposite response to extreme events. Larger but less frequent rainfall events may result in proportional reductions in evaporative losses in xeric systems, and thus may lead to greater soil water availability. Hydric (wetland) ecosystems are predicted to experience reduced periods of anoxia in response to prolonged intervals between rainfall events. Understanding these contingent effects of ecosystem water balance is necessary for predicting how more extreme precipitation regimes will modify ecosystem processes and alter interactions with related global change drivers.nnHuman activities have caused dramatic and unprecedented changes in the global chemical and physical environment, including well-documented increases in atmospheric carbon dioxide (CO2) concentration and mean annual temperature (Karl and Knight 1998, New et al. 2001, IPCC 2007). If greenhouse gas emissions continue to increase at present rates, atmospheric CO2 concentrations will more than double preindustrial levels during the current century, and general circulation models (GCMs) predict additional increases in mean global temperature of between 1.1 and 6.4 degrees Celsius (IPCC 2007). Alterations in patterns of global atmospheric circulation and hydrologic processes are predicted to modify mean annual precipitation and to increase the inter-and intra-annual variability of precipitation (Easterling et al. 2000, Schär et al. 2004, Seneviratne et al. 2006, IPCC 2007). The combined effects of increased atmospheric CO2, elevated global temperatures, and altered precipitation regimes represent a rapid and unprecedented change to the fundamental drivers of chemical and biological processes within ecosystems (Amundson and Jenny 1997). The complexity and pace of these global anthropogenic changes pose a major challenge for ecosystem scientists and managers (NRC 2001), particularly given their potential impact on the provisioning of ecosystem services (Bennett et al. 2005).nnAmplification of the hydrological cycle, a consequence of global warming, has been expressed in the form of increased cloudiness, latent heat fluxes, and more frequent climate extremes (Huntington 2006, IPCC 2007). Key predictions of hydrological amplification are an increased risk of drought and heat waves (recently exemplified by the extremely dry and hot summer of 2003 in Europe; Ciais et al. 2005, Reichstein et al. 2007) and an increased probability of intense precipitation events and flooding. The complexity, interactions, and scope of global-scale atmospheric processes have made potential changes in precipitation patterns difficult to predict, compared with the more consistent projections for increased atmospheric CO2 and temperature. Thus, although most GCMs predict a modest increase in rainfall at the global scale, they often disagree on the magnitude and even the direction of change at regional and especially local scales (IPCC 2007, Zhang et al. 2007). In contrast, projections have been consistent for intensified intra-annual precipitation regimes (through larger individual precipitation events) with longer intervening dry periods than at present (Easterling et al. 2000, IPCC 2007). Less frequent but more intense precipitation events may increase the severity of within-season drought, significantly alter evapotranspiration, and generate greater runoff (Fay et al. 2003, MacCracken et al. 2003). These intra-annual modifications to the hydrological cycle are distinct from the better-known alterations in interannual precipitation variability associated with large-scale climate dynamics (e.g., the El Niño Southern and Pacific Decadal oscillations), although both intra-and interannual changes lie along a continuum of altered temporal patterns in hydrology. Our focus here is on increased intra-annual variability in precipitation (i.e., more extreme rainfall regimes), a more subtle but chronic and pervasive change in the way that precipitation is delivered to terrestrial ecosystems.nnThere is growing evidence at global, regional, and local scales that intra-annual precipitation regimes have already become more extreme. For example, global precipitation records show an average increase of only 9 millimeters (mm) of precipitation over land areas (excluding Antarctica) during the 20th century (figure 1). Regionally, however, these records show an increased frequency of wet days in portions of North America, Europe, and Southern Africa; an increased frequency and duration of dry periods in European-African, Australian, Mediterranean, and Asian monsoon regions; and an increased proportion of total precipitation originating from the largest precipitation events in several regions (figure 1; New et al. 2001, Groisman et al. 2005). Elevated temperatures have been associated with a 10% increase in annual precipitation in the contiguous United States over the past century; this increase is expressed primarily as an intensification of the largest precipitation events, particularly in the summer (Karl and Knight 1998). Thus, the link between higher temperatures and more extreme precipitation regimes has solid theoretical underpinnings and model validation (Karl and Trenberth 2003), as well as emerging empirical support from global climate data sets (Karl et al. 1995, Kunkel et al. 1999, Groisman et al. 2005).
机译:据预测,由于全球变暖导致的水文循环扩大,将导致更极端的年内降水状况,其特征是降雨事件增多,两次事件之间的间隔更长。我们基于过去的研究和生态理论,提出了一个概念框架,用于预测气候变化这一未被重视的方面的后果。我们考虑了各种陆地生态系统,它们的总体水平衡各不相同。随着降雨事件之间的间隔增加,预计更多的极端降雨制度将增加中生生态系统中土壤水分胁迫的持续时间和严重性。相反,干燥生态系统可能对极端事件表现出相反的反应。较大但频率较低的降雨事件可能导致干湿系统中的蒸发损失成比例减少,因此可能导致更大的土壤水分利用率。预测(湿地)生态系统将经历降雨时间间隔延长而导致的缺氧时间减少。了解生态系统水平衡的这些偶然影响对于预测更极端的降水机制将如何改变生态系统过程并改变与相关全球变化驱动力的相互作用是必要的。人类活动已导致全球化学和物理环境发生了前所未有的巨大变化,包括有据可查的大气中二氧化碳(CO2)浓度和年平均温度的增加(Karl and Knight 1998,New et al。2001,IPCC 2007)。如果温室气体排放量继续以目前的速度增加,那么本世纪大气中的二氧化碳浓度将超过工业化前水平的两倍,而通用循环模型(GCM)预测全球平均温度还会增加1.1到6.4摄氏度之间(IPCC 2007) 。预测全球大气环流和水文过程模式的变化将改变年平均降水量,并增加降水的年际和年内变化性(Easterling等人,2000;Schär等人,2004; Seneviratne等人,2006; IPCC 2007)。大气中二氧化碳增加,全球温度升高和降水变化的综合影响,代表着生态系统内化学和生物过程基本驱动力的迅速而空前的变化(Amundson and Jenny 1997)。这些全球人为变化的复杂性和速度对生态系统科学家和管理者构成了重大挑战(NRC 2001),特别是考虑到它们对生态系统服务提供的潜在影响(Bennett等人2005).nn水文循环的放大结果全球变暖的趋势以云量增加,潜热通量增加和极端气候更加频繁的形式表示出来(Huntington 2006,IPCC 2007)。水文放大的主要预测是干旱和热浪的风险增加(最近的例子是2003年欧洲极度干旱和炎热的夏季; Ciais等,2005; Reichstein等,2007),以及发生强烈降水事件和水灾的可能性增加。洪水。与更一致的对大气中二氧化碳和温度升高的预测相比,全球大气过程的复杂性,相互作用和范围使降水模式的潜在变化难以预测。因此,尽管大多数GCM预测全球范围内的降雨将有适度增加,但它们通常在区域,特别是地方范围内的变化幅度甚至变化方向上意见不一致(IPCC 2007,Zhang et al。2007)。相比之下,对于强化年内降水方案(通过更大的个别降水事件)和中间干旱期比目前更长的预测是一致的(Easterling et al。2000,IPCC 2007)。频率较低但强度较大的降水事件可能会增加季节内干旱的严重性,显着改变蒸散量,并产生更大的径流(Fay等,2003; MacCracken等,2003)。这些年内对水文循环的修改不同于众所周知的与大规模气候动力学有关的年际降水变化(例如,厄尔尼诺南部和太平洋年代际振荡),尽管年内和年际变化都在发生。水文学中时间模式变化的连续体。我们的重点是增加年内降水的变化性(即更极端的降雨制度),这是将降水传递到陆地生态系统的方式更为细微但长期和普遍的变化。当地的年内降水模式已经变得更加极端。例如,全球降水记录显示,在20世纪,整个陆地(南极洲除外)平均降水量仅增加了9毫米(图1)。然而,从地区上看,这些记录表明在北美,欧洲和南部非洲的部分地区,潮湿天气的频率增加了。欧洲-非洲,澳大利亚,地中海和亚洲季风地区的干旱期频率和持续时间增加;以及来自几个地区最大降水事件的总降水比例增加(图1; New等,2001; Groisman等,2005)。在过去的一个世纪中,温度升高导致美国连续年降水量增加10%。这种增加主要表现为最大降水事件的加剧,特别是在夏季(Karl and Knight 1998)。因此,高温和更极端的降水模式之间的联系具有坚实的理论基础和模型验证(Karl和Trenberth,2003年),以及来自全球气候数据集的新兴经验支持(Karl等,1995年; Kunkel等,1999年, Groisman et al.2005)。

著录项

  • 来源
    《BioScience》 |2008年第9期|p.811-821|共11页
  • 作者单位

    Alan K. Knapp (e-mail: aknapp@colostate.edu) and Jana L. Heisler are with the graduate degree program in ecology and the Department of Biology at Colorado State University in Fort Collins.Claus Beier is with the Biosystems Department at the Technical University of Denmark in Roskilde. David D. Briske is with the Department of Ecosystem Science and Management at Texas A&M University in College Station. Aimée T. Classen is with the Department of Ecology and Evolutionary Biology at the University of Tennessee in Knoxville. Yiqi Luo, Jesse E. Bell, Rebecca Sherry, and Ensheng Weng are with the Department of Botany and Microbiology at the University of Oklahoma in Norman. Markus Reichstein is with the Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry, Jena, Germany. Melinda D. Smith is with the Department of Ecology and Evolutionary Biology at Yale University in New Haven, Connecticut. Stanley D. Smith is with the School of Life Sciences at the University of Nevada in Las Vegas. Philip A. Fay is with the Grassland Soil and Water Research Laboratory of the US Department of Agriculture's Agricultural Research Service in Temple, Texas. Steven W. Leavitt is with the Laboratory of Tree-Ring Research at the University of Arizona in Tucson. Benjamin Smith is with the Geobiosphere Science Centre at Lund University in Lund, Sweden.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号