首页> 外文期刊>BioScience >Crime Scene Genetics: Transforming Forensic Science through Molecular Technologies
【24h】

Crime Scene Genetics: Transforming Forensic Science through Molecular Technologies

机译:犯罪现场遗传学:通过分子技术改变法医学

获取原文
获取原文并翻译 | 示例
           

摘要

Advances in DNA (deoxyribonucleic acid) technology over the past 25 years have led to spectacularly precise forensic identification techniques, although some applications have also unleashed controversies regarding genetic privacy. Current molecular forensic work is pushing these technologies even further by analyzing extremely damaged DNA and by introducing RNA (ribonucleic acid) techniques to forensics.nnIn 1986, a British teenager named Richard Buckland admitted under police questioning that he had raped and murdered 15-year-old Dawn Ashworth in Leicestershire, England. He denied, however, any connection to a three-year-old murder that police were convinced had been committed by the same person. Had this happened just a year or two earlier, Buckland may have gone to prison for one or both murders. But a new technique, called DNA fingerprinting, conclusively demonstrated that semen found at both crime scenes did not belong to Buckland.nnLeicestershire police and the United Kingdom's Forensic Science Service conducted a mass DNA screening of local men, looking for a match to the genetic profile of the murderer. They found nothing—until a man was overheard saying that he had given a DNA sample in place of his friend Colin Pitchfork. After Pitchfork was tracked down, he quickly became the first person convicted for murder on the basis of DNA evidence.nnUntil the 1980s, such precise identification of a suspect was unheard of. If someone left a drop of blood at a crime scene, forensic scientists could analyze only the person's blood type plus a few proteins that exist in slightly different versions in different people. But neither of these tests is particularly specific: many people share blood types and protein markers, making unique identification from a blood stain nearly impossible.nnThe course of molecular forensics changed in 1984, when geneticist Alec Jeffreys, of the University of Leicester in the United Kingdom, discovered a new type of marker in the human genome. He found that our DNA contains many noncoding regions in which a sequence of 10 to 100 base pairs is repeated multiple times. Although the sequence is usually the same at each region in all people, the number of times that the sequence is repeated is highly variable among individuals.nnJeffreys immediately saw the potential for forensic use of these markers, which he called “minisatellites.” In less than two years, forensic labs across the world could create DNA “fingerprints” of crime suspects by profiling their unique minisatellite makeup. For the first time, forensic scientists could create genetic profiles so specific that the only people who share them are identical twins.nnDNA fingerprint techniques evolved subtly over the next several years, until the polymerase chain reaction (PCR), developed by Kary Mullis, was introduced into forensic work. By allowing the selective amplification of any desired stretch of DNA, PCR ushered in unprecedented sensitivity in low-level DNA detection at crime scenes. All of today's forensic genetic methods are based on PCR.
机译:在过去的25年中,DNA(脱氧核糖核酸)技术的进步导致了极为精确的法医鉴定技术,尽管某些应用也引发了有关遗传隐私的争议。当前的分子取证工作正在通过分析极度受损的DNA并通过将RNA(核糖核酸)技术引入取证工作来进一步推动这些技术的发展。nn1986年,名叫理查德·巴克兰的英国少年在警方质疑下承认自己强奸并谋杀了15年,老黎明阿什沃思在英国莱斯特郡。但是,他否认与3岁谋杀案有关,警方确信这是同一个人犯下的罪行。如果这只是在一两年前发生的话,巴克兰可能已经因一次或两次谋杀而入狱。但是一项名为DNA指纹识别的新技术最终证明了在两个犯罪现场都发现的精液不属于Buckland.nn莱斯特郡警察和英国法医科学局对当地男子进行了大规模DNA筛选,以寻找与遗传特征相符的DNA。凶手的他们什么也没发现,直到有人听到一个男人说他已经提供了DNA样品代替他的朋友Colin Pitchfork为止。在干草叉被发现后,他迅速成为根据DNA证据被定罪谋杀的第一人。直到1980年代,这种对犯罪嫌疑人的精确识别都是闻所未闻的。如果某人在犯罪现场留下一滴血,法医们只能分析该人的血型以及一些蛋白质,这些蛋白质在不同的人中以略有不同的形式存在。但是这些测试都不是特别明确的:许多人共享血型和蛋白质标记,几乎不可能从血迹中进行识别。nn分子取证的过程在1984年发生了变化,当时美国莱斯特大学的遗传学家Alec Jeffreys王国,在人类基因组中发现了一种新型标记。他发现我们的DNA包含许多非编码区,其中10到100个碱基对的序列被重复多次。尽管每个人的每个区域的序列通常都是相同的,但是重复序列的次数在个体之间是高度可变的。nnJeffreys立即看到了对这些标记物进行法医鉴定的潜力,他称之为“小卫星”。在不到两年的时间内,世界各地的法医实验室都可以通过对犯罪嫌疑人的独特迷你卫星构成进行分析,从而为其创建DNA“指纹”。法医科学家们首次能够创造出如此特殊的遗传图谱,从而使唯一共享它们的人是同卵双胞胎。nnDNA指纹技术在随后的几年中得到了巧妙的发展,直到由Kary Mullis开发的聚合酶链反应(PCR)得以应用。引入法医工作。通过选择性扩增任何所需的DNA片段,PCR在犯罪现场的低水平DNA检测中带来了前所未有的灵敏度。当今所有的法医遗传方法都基于PCR。

著录项

  • 来源
    《BioScience》 |2008年第6期|p.484-489|共6页
  • 作者

    Melissa Lee Phillips‌;

  • 作者单位

    Melissa Lee Phillips (e-mail: mlp@nasw.org) is a freelance science writer in New York City.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号