首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control
【24h】

Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

机译:借助机器人力控制实现基于标准声辐射力(ARF)的超声弹性测量

获取原文
获取原文并翻译 | 示例
           

摘要

Objective: Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods: The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results: The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases ( 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion: Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance: This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging.
机译:目的:基于声辐射力(ARF)的方法来测量组织弹性,需要传输来自固定超声探头的聚焦高能声脉冲,并对生成的组织位移进行基于超声的跟踪,以获得刚度图像或剪切波速度估算值。该方法已经在生物医学应用中建立了优势,例如肿瘤检测和组织纤维化分期。然而,一个局限性是对所施加探针压力的依赖性,这难以手动控制并且禁止定量测量的标准化。为了克服此限制,我们构建了一个机器人原型,该原型控制探针接触力以量化剪切波速度。方法:对机器人进行了评估,控制力增量来自三名志愿者的模仿组织的幻像和体内腹部组织。结果:在幻像中,所需力和测量力之间的均方根误差为0.07 N,体内腹部组织的脂肪层的均方根误差更高。在2.5至30 N的压缩力下,体模中的平均剪切波速度从3.7增至4.5 m / s,在体内脂肪中从1.0增至3.0 m / s。机器人方法获得的剪切波速度的标准偏差在大多数情况下都较低(0.2 m / s),可与基于半定量界标的方法获得的结果相媲美。结论:对于引入机器人系统以控制基于ARF的组织弹性测量所施加的探针压力的研究结果是有希望的。启示:这种方法在疾病进展的纵向研究,患者之间的比较研究以及大规模多维弹性成像中具有潜在的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号