首页> 外文期刊>Biomechanics and Modeling in Mechanobiology >Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering
【24h】

Modeling interlamellar interactions in angle-ply biologic laminates for annulus fibrosus tissue engineering

机译:角膜层生物层压物中层间相互作用的建模,用于纤维环组织工程

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mechanical function of the annulus fibrosus of the intervertebral disc is dictated by the composition and microstructure of its highly ordered extracellular matrix. Recent work on engineered angle-ply laminates formed from mesenchymal stem cell (MSC)-seeded nanofibrous scaffolds indicates that the organization of collagen fibers into planes of alternating alignment may play an important role in annulus fibrosus tissue function. Specifically, these engineered tissues can resist tensile deformation through shearing of the interlamellar matrix as layers of collagen differentially reorient under load. In the present work, a hyperelastic constitutive model was developed to describe the role of interlamellar shearing in reinforcing the tensile response of biologic laminates, and was applied to experimental results from engineered annulus constructs formed from MSC-seeded nanofibrous scaffolds. By applying the constitutive model to uniaxial tensile stress–strain data for bilayers with three different fiber orientations, material parameters were generated that characterize the contributions of extrafibrillar matrix, fibers, and interlamellar shearing interactions. By 10 weeks of in vitro culture, interlamellar shearing accounted for nearly 50% of the total stress associated with uniaxial extension in the anatomic range of ply angle. The model successfully captured changes in function with extracellular matrix deposition through variations in the magnitude of model parameters with culture duration. This work illustrates the value of engineered tissues as tools to further our understanding of structure–function relations in native tissues and as a test-bed for the development of constitutive models to describe them.
机译:椎间盘纤维环的机械功能由其高度有序的细胞外基质的组成和微观结构决定。由间充质干细胞(MSC)播种的纳米纤维支架形成的工程角铺层层压板的最新工作表明,胶原纤维组织成交替排列的平面可能在纤维环组织功能中发挥重要作用。特别地,这些工程组织可以通过剪切层间基质来抵抗拉伸变形,因为胶原蛋白层在负荷下会不同地重新定向。在本工作中,开发了一种超弹性本构模型来描述层间剪切在增强生物层合物的拉伸响应中的作用,并将其应用于由MSC播种的纳米纤维支架制成的工程环形结构的实验结果。通过将本构模型应用于具有三种不同纤维取向的双层的单轴拉伸应力-应变数据,可以生成表征原纤维外基质,纤维和层间剪切相互作用的材料参数。在体外培养10周后,层间剪切占层间角解剖范围内与单轴延伸相关的总应力的近50%。该模型成功地捕获了模型参数随培养持续时间的变化而引起的细胞外基质沉积的功能变化。这项工作说明了工程组织的价值,它可以作为工具来加深我们对天然组织的结构-功能关系的理解,也可以作为开发描述它们的本构模型的试验台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号