首页> 外文期刊>Biomechanics and Modeling in Mechanobiology >Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves
【24h】

Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves

机译:血液动力学驱动胚胎房室瓣膜生长和重构的计算模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Embryonic heart valves develop under continuous and demanding hemodynamic loading. The particular contributions of fluid pressure and shear tractions in valve morphogenesis are difficult to decouple experimentally. To better understand how fluid loads could direct valve formation, we developed a computational model of avian embryonic atrioventricular (AV) valve (cushion) growth and remodeling using experimentally derived parameters for the blood flow and the cushion stiffness. Through an iterative scheme, we first solved the fluid loads on the axisymmetric AV canal and cushion model geometry. We then applied the fluid loads to the cushion and integrated the evolution equations to determine the growth and remodeling. After a set time of growth, we updated the fluid domain to reflect the change in cushion geometry and resolved for the fluid forces. The rate of growth and remodeling was assumed to be a function of the difference between the current stress and an isotropic homeostatic stress state. The magnitude of the homeostatic stress modulated the rate of volume addition during the evolution. We found that the pressure distribution on the AV cushion was sufficient to generate leaflet-like elongation in the direction of flow, through inducing tissue resorption on the inflow side of cushion and expansion on the outflow side. Conversely, shear tractions minimally altered tissue volume, but regulated the remodeling of tissue near the cushion surface, particular at the leading edge. Significant shear and circumferential residual stresses developed as the cushion evolved. This model offers insight into how natural and perturbed mechanical environments may direct AV valvulogenesis and provides an initial framework on which to incorporate more mechano-biological details.
机译:胚胎心脏瓣膜在持续而苛刻的血液动力学负荷下发展。流体压力和剪切力在瓣膜形态发生中的特殊作用很难通过实验分离。为了更好地了解流体负荷如何引导瓣膜形成,我们使用实验得出的血流和坐垫刚度参数开发了禽胚房室(AV)瓣膜(靠垫)生长和重塑的计算模型。通过迭代方案,我们首先解决了轴对称AV管和垫层模型几何上的流体载荷。然后,我们将流体载荷施加到坐垫上,并整合演化方程以确定增长和重塑。经过一段设定的增长时间后,我们更新了流体域以反映垫子几何形状的变化并解决了流体力的问题。增长和重塑的速率被假定为当前应力和各向同性稳态应力状态之间差异的函数。稳态应力的大小调节了进化过程中体积增加的速率。我们发现,通过在缓冲垫的流入侧诱导组织吸收并在流出侧膨胀,AV垫上的压力分布足以在流动方向上产生小叶状伸长。相反,剪切牵引力最小程度地改变了组织体积,但是调节了靠近靠垫表面,特别是在前缘处的组织的重塑。随着缓冲垫的发展,产生了显着的剪切应力和周向残余应力。该模型提供了有关自然和扰动的机械环境如何指导房室瓣膜形成的见解,并提供了一个初步的框架,在此框架中可以纳入更多的机械生物学细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号