...
首页> 外文期刊>Biomechanics and Modeling in Mechanobiology >Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall
【24h】

Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall

机译:声道传递函数的共振峰频率和带宽受声道壁机械阻抗的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The acoustical properties of the vocal tract, the air-filled cavity between the vocal folds and the mouth opening, are determined by its individual geometry, the physical properties of the air and of its boundaries. In this article, we address the necessity of complex impedance boundary conditions at the mouth opening and at the border of the acoustical domain inside the human vocal tract. Using finite element models based on MRI data for spoken and sung vowels /a/, /i/ and / / and comparison of the transfer characteristics by analysis of acoustical data using an inverse filtering method, the global wall impedance showed a frequency-dependent behaviour and depends on the produced vowel and therefore on the individual vocal tract geometry. The values of the normalised inertial component (represented by the imaginary part of the impedance) ranged from (250,hbox {g}/hbox {m}^{2}) at frequencies higher than about 3kHz up to about (2.5times 10^{5},hbox {g}/hbox {m}^{2}) in the mid-frequency range around 1.5–3kHz. In contrast, the normalised dissipation (represented by the real part of the impedance) ranged from (65) to (4.5times 10^{5},hbox {Ns}/hbox {m}^{3}). These results indicate that structures enclosing the vocal tract (e.g. oral and pharyngeal mucosa and muscle tissues), especially their mechanical properties, influence the transfer of the acoustical energy and the position and bandwidth of the formant frequencies. It implies that the timbre characteristics of vowel sounds are likely to be tuned by specific control of relaxation and strain of the surrounding structures of the vocal tract.
机译:声道的声学特性,在声带和嘴巴之间的充满空气的空腔由其各自的几何形状,空气的物理特性及其边界确定。在本文中,我们解决了在人的声道内张口和声学域边界处的复杂阻抗边界条件的必要性。使用基于MRI数据的口语和歌状元音/ a /,/ i /和//的有限元模型,并通过使用逆滤波方法对声学数据进行分析来比较传递特性,整体壁阻抗表现出与频率相关的行为并且取决于所产生的元音,并因此取决于单个声道的几何形状。在高于约3kHz的频率下,归一化惯性分量的值(由阻抗的虚部表示)的范围从(250,hbox {g} / hbox {m} ^ {2})到大约(2.5×10 ^) {5},hbox {g} / hbox {m} ^ {2})在约1.5–3kHz的中频范围内。相反,归一化的耗散(由阻抗的实部表示)在(65)到(4.5乘以10 ^ {5},hbox {Ns} / hbox {m} ^ {3}的范围内。这些结果表明,包围声道的结构(例如口腔和咽粘膜和肌肉组织),特别是它们的机械性能,影响声能的传递以及共振峰频率的位置和带宽。这意味着元音声音的音色特性很可能通过对声道周围结构的松弛和张力的特定控制来进行调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号