...
首页> 外文期刊>Biomass & bioenergy >Biogas optimisation processes and effluent quality: A review
【24h】

Biogas optimisation processes and effluent quality: A review

机译:沼气优化流程和废水质量:综述

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Since the first use of anaerobic digestion technology to generate biogas in 1895 to power street lights in Britain and also as a Municipal Solid Waste Management technique in the US in 1939, significant advances have been developed to optimise the process in a sustainable manner. In practice, optimising anaerobic digesters to increase biogas production dependent on a balanced pH (neutral), tolerable volatile fatty acids and alkalinity levels by anaerobic bacteria. Others include maintaining suitable temperature regime, providing suitable organic loading rate to prevent noxious conditions, well-balanced carbon to nitrogen ratio to limit ammonia build-up and appropriate choice of substrates. In terms of biomass, lignocellulose substrates constitute the most abundant bio-resource. This resource however requires modification of the chemistry of the structure to improve its biodeg-radation, biogas production and effluent quality. There have been attempts by most researchers to improve lignocellulose biomass utilization in anaerobic digesters through delignification to prevent non-productive binding of bacteria as well as reduce the crystalline in cellulose with the aim of making the holocellulose fractions bioavailable. However, none of the techniques so far applied for the purpose of optimising biogas production has attained the maximum theoretical biogas yield of 120,000-650,000 L t~(-1). Techniques frequently applied include among others; pretreatment (chemical, biological, physical or their combinations), co-digestion, application of inoculum or bio-augmentation, and supplementing anaerobic digesters with micronutrients and nanoparticles. This review thus highlights research findings from authors in relation to factors influencing effective degradation of lignin based biomass in other to ascertain the best possible strategies to scale up the process.
机译:自从1895年首次使用厌氧消化技术产生沼气为英国的路灯供电以来​​,以及1939年在美国作为市政固体废物管理技术以来,已经取得了重大进展,以可持续方式优化了该工艺。在实践中,优化厌氧消化池以提高沼气产量,取决于平衡的pH(中性),可耐受的挥发性脂肪酸和厌氧细菌的碱度。其他措施包括保持适当的温度范围,提供适当的有机负载速率以防止有害条件,平衡碳氮比以限制氨的积累以及适当选择底物。就生物量而言,木质纤维素底物构成了最丰富的生物资源。但是,这种资源需要修改结构的化学性质,以改善其生物辐射度,沼气产量和废水质量。大多数研究者已经尝试通过脱木素作用来改善厌氧消化器中木质纤维素生物质的利用,以防止细菌的非生产性结合以及减少纤维素中的结晶,目的是使全纤维素级分具有生物利用率。然而,迄今为止,没有任何一种用于优化沼气生产的技术能够达到理论最高沼气产量120,000-650,000 L t〜(-1)。经常使用的技术包括:预处理(化学,生物,物理或它们的组合),共同消化,接种物或生物增补剂的应用,并为厌氧消化池补充微量营养素和纳米颗粒。因此,本综述着重介绍了作者对影响木质素基生物质有效降解的因素的研究结果,从而确定了扩大该过程的最佳策略。

著录项

  • 来源
    《Biomass & bioenergy》 |2020年第2期|105449.1-105449.11|共11页
  • 作者

  • 作者单位

    Department of Agricultural and Biosystems Engineering Kwame Nkrumah University of Science & Technology Kumasi Ghana;

    Department of Civil Environmental and Geomatics Engineering School of Engineering College of Science and Technology University of Rwanda Rwanda;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anaerobic digestion; Substrates; Process factors; Co-digestion; Trace elements;

    机译:厌氧消化;基材;工艺因素;共消化;微量元素;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号