...
首页> 外文期刊>Biological Cybernetics >A hemicord locomotor network of excitatory interneurons: a simulation study
【24h】

A hemicord locomotor network of excitatory interneurons: a simulation study

机译:兴奋性神经元的半自动运动网络:模拟研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Locomotor burst generation is simulated using a full-scale network model of the unilateral excitatory interneuronal population. Earlier small-scale models predicted that a population of excitatory neurons would be sufficient to produce burst activity, and this has recently been experimentally confirmed. Here we simulate the hemicord activity induced under various experimental conditions, including pharmacological activation by NMDA and AMPA as well as electrical stimulation. The model network comprises a realistic number of cells and synaptic connectivity patterns. Using similar distributions of cellular and synaptic parameters, as have been estimated experimentally, a large variation in dynamic characteristics like firing rates, burst, and cycle durations were seen in single cells. On the network level an overall rhythm was generated because the synaptic interactions cause partial synchronization within the population. This network rhythm not only emerged despite the distributed cellular parameters but relied on this variability, in particular, in reproducing variations of the activity during the cycle and showing recruitment in interneuronal populations. A slow rhythm (0.4–2 Hz) can be induced by tonic activation of NMDA-sensitive channels, which are voltage dependent and generate depolarizing plateaus. The rhythm emerges through a synchronization of bursts of the individual neurons. A fast rhythm (4–12 Hz), induced by AMPA, relies on spike synchronization within the population, and each burst is composed of single spikes produced by different neurons. The dynamic range of the fast rhythm is limited by the ability of the network to synchronize oscillations and depends on the strength of synaptic connections and the duration of the slow after hyperpolarization. The model network also produces prolonged bouts of rhythmic activity in response to brief electrical activations, as seen experimentally. The mutual excitation can sustain long-lasting activity for a realistic set of synaptic parameters. The bout duration depends on the strength of excitatory synaptic connections, the level of persistent depolarization, and the influx of Ca2+ ions and activation of Ca2+-dependent K+ current.
机译:运动运动爆发的产生是使用单侧兴奋性神经元间群体的全尺寸网络模型进行模拟的。早期的小规模模型预测,一组兴奋性神经元足以产生爆发性活动,最近已通过实验证实了这一点。在这里,我们模拟在各种实验条件下诱导的半胱氨酸活性,包括NMDA和AMPA的药理激活以及电刺激。模型网络包括实际数量的细胞和突触连接模式。根据实验估计,使用类似的细胞和突触参数分布,可以在单个细胞中观察到动态特征的大变化,例如发射速率,爆发和周期持续时间。在网络级别上,由于突触相互作用导致种群内的部分同步,因此产生了整体节奏。尽管存在分散的细胞参数,但这种网络节律不但出现,而且还依赖于这种可变性,特别是在循环过程中再现活动的变化并显示出神经元间种群的募集。 NMDA敏感通道的强音激活可能会导致节奏缓慢(0.4–2 Hz),这取决于电压并产生去极化平台。通过单个神经元爆发的同步出现节奏。由AMPA引起的快速节律(4–12 Hz)依赖于种群内的峰同步,每个猝发由不同神经元产生的单个峰组成。快速节奏的动态范围受到网络同步振荡的能力的限制,并且取决于突触连接的强度和超极化后的慢速持续时间。如实验所见,模型网络还可以响应短暂的电激活而延长节律活动的周期。对于一组逼真的突触参数,相互激发可以维持持久的活动。持续时间取决于兴奋性突触连接的强度,持续的去极化水平,Ca2 +离子的流入和Ca2 +依赖性K +电流的激活。

著录项

  • 来源
    《Biological Cybernetics》 |2007年第2期|229-243|共15页
  • 作者单位

    Computational Biology and Neurocomputing School of Computer Science and Communication Royal Institute of Technology Stockholm 100 44 Sweden;

    Computational Biology and Neurocomputing School of Computer Science and Communication Royal Institute of Technology Stockholm 100 44 Sweden;

    Nobel Institute for Neurophysiology Department of Neuroscience Karolinska Institute Stockholm 171 77 Sweden;

    Computational Biology and Neurocomputing School of Computer Science and Communication Royal Institute of Technology Stockholm 100 44 Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号