首页> 外文期刊>Biogeochemistry >Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes
【24h】

Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes

机译:陆地生态系统中的氮,有机碳和硫循环:将氮饱和度与土壤微生物过程的碳限制联系起来

获取原文
获取原文并翻译 | 示例
       

摘要

Elevated and chronic nitrogen (N) deposition to N-limited terrestrial ecosystems can lead to ‘N saturation’, with resultant ecosystem damage and leaching of nitrate (NO3 −) to surface waters. Present-day N deposition, however, is often a poor predictor of NO3 − leaching, and the pathway of the ecosystem transition from N-limited to N-saturated remains incompletely understood. The dynamics of N cycling are intimately linked to the associated carbon (C) and sulphur (S) cycles. We hypothesize that N saturation is associated with shifts in the microbial community, manifest by a decrease in the fungi-to-bacteria ratio and a transition from N to C limitation. Three mechanisms could lead to lower amount of bioavailable dissolved organic C (DOC) for the microbial community and to C limitation of N-rich systems: (1) Increased abundance of N for plant uptake, causing lower C allocation to plant roots; (2) chemical suppression of DOC solubility by soil acidification; and (3) enhanced mineralisation of DOC due to increased abundance of electron acceptors in the form of ({{text{SO}}_{ 4}}^{ 2-}) and NO3 − in anoxic soil micro-sites. Here we consider each of these mechanisms, the extent to which their hypothesised impacts are consistent with observations from intensively-monitored sites, and the potential to improve biogeochemical models by incorporating mechanistic links to the C and S cycles.
机译:氮在有限的陆地生态系统中的长期沉积会导致“ N饱和”,从而导致生态系统受损以及硝酸盐(NO3-)向地表水的淋溶。然而,当今的氮沉积通常不能很好地预测NO3-的淋失,并且生态系统从N受限向N饱和过渡的途径仍然不完全清楚。 N循环的动力学与相关的碳(C)和硫(S)循环密切相关。我们假设N饱和与微生物群落的变化有关,表现为真菌与细菌比率的降低以及从N到C限制的转变。三种机制可能导致微生物群落的生物利用的可溶性有机碳(DOC)含量降低,并导致富氮系统的碳限制:(1)植物吸收氮的量增加,导致植物对根部的碳分配降低; (2)通过土壤酸化化学抑制DOC的溶解度; (3)由于缺氧土壤微场所中({{text {SO}} __ {4}} ^ {2-})和NO3​​-形式的电子受体的增加,DOC的矿化作用增强。在这里,我们考虑这些机制中的每一种,它们的假设影响在多大程度上与集中监测站点的观察结果相符,以及通过将机理链接到C和S循环中来改善生物地球化学模型的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号