...
首页> 外文期刊>IEEE transactions on automation science and engineering >Multiple-Change-Point Modeling and Exact Bayesian Inference of Degradation Signal for Prognostic Improvement
【24h】

Multiple-Change-Point Modeling and Exact Bayesian Inference of Degradation Signal for Prognostic Improvement

机译:多变化点建模和退化信号的精确贝叶斯推断,以改善预后

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Prognostics play an increasingly important role in modern engineering systems for smart maintenance decision-making. In parametric regression-based approaches, the parametric models are often too rigid to model degradation signals in many applications. In this paper, we propose a Bayesian multiple-change-point (CP) modeling framework to better capture the degradation path and improve the prognostics. At the offline modeling stage, a novel stochastic process is proposed to model the joint prior of CPs and positions. All hyperparameters are estimated through an empirical two-stage process. At the online monitoring and remaining useful life (RUL) prediction stage, a recursive updating algorithm is developed to exactly calculate the posterior distribution and RUL prediction sequentially. To control the computational cost, a fixed-support-size strategy in the online model updating and a partial Monte Carlo strategy in the RUL prediction are proposed. The effectiveness and advantages of the proposed method are demonstrated through thorough simulation and real case studies.Note to Practitioners-Degradation signals have been widely used in determining the current health condition and estimate the remaining useful life (RUL) of a component or a system. Most of the existing prognostics utilize a parametric regression model to describe the evolution path of degradation signals for RUL prediction. The common functional forms of these models include simple linear, quadratic, and exponential functions. However, in many applications, the degradation signals show multiple-segment characteristics and the existing parametric forms are inadequate to capture the degradation trend. Motivated by such issue, this paper presents a multiple-change-point (CP) modeling approach, where the degradation signal is divided into several consecutive segments by CPs, and each segment is modeled by a unique parametric model. To capture the heterogeneity across different units, all the parameters, including the number and locations of CPs and model parameters of each segment, are assumed to be random variables following certain distributions. Then, we develop a statistical method to estimate these distributions using historical data. At the online monitoring stage, we develop an innovative updating algorithm to exactly calculate the closed forms of the posterior distributions of the latest CP, the current segment, and model parameters of the current segment. We also derive a closed form for the RUL distribution estimation. Later, several efficient approximation strategies are proposed to reduce the computational burden. Simulation studies and real case studies have shown that the proposed methodology has much better performance than those of existing approaches in handling degradation signals of multiple-segment characteristics.
机译:在智能维护决策的现代工程系统中,预测功能扮演着越来越重要的角色。在基于参数回归的方法中,参数模型通常过于僵化,无法在许多应用中为降级信号建模。在本文中,我们提出了一种贝叶斯多变化点(CP)建模框架,以更好地捕获退化路径并改善预后。在离线建模阶段,提出了一种新颖的随机过程来建模CP和位置的联合先验。所有超参数均通过经验的两阶段过程进行估算。在在线监视和剩余使用寿命(RUL)预测阶段,开发了一种递归更新算法,以准确地顺序计算后验分布和RUL预测。为了控制计算成本,提出了在线模型更新中的固定支持大小策略和RUL预测中的局部蒙特卡洛策略。通过全面的仿真和实际案例研究证明了该方法的有效性和优势。从业人员注意-退化信号已广泛用于确定当前的健康状况并估计组件或系统的剩余使用寿命(RUL)。大多数现有的预测方法都使用参数回归模型来描述用于RUL预测的退化信号的演化路径。这些模型的常见功能形式包括简单的线性,二次和指数函数。然而,在许多应用中,劣化信号显示多段特性,并且现有的参数形式不足以捕获劣化趋势。受此问题的影响,本文提出了一种多变化点(CP)建模方法,其中,降解信号被CP分为几个连续的片段,每个片段都由唯一的参数模型建模。为了捕获不同单元之间的异质性,假定所有参数(包括CP的数量和位置以及每个段的模型参数)都是遵循一定分布的随机变量。然后,我们开发一种统计方法来使用历史数据来估计这些分布。在在线监控阶段,我们开发了一种创新的更新算法,可以精确计算最新CP的后验分布,当前段和当前段的模型参数的闭合形式。我们还导出了RUL分布估计的封闭形式。后来,提出了几种有效的近似策略来减少计算负担。仿真研究和实际案例研究表明,所提出的方法在处理多段特性的降级信号方面比现有方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号