...
首页> 外文期刊>Automation in construction >Deep learning for site safety: Real-time detection of personal protective equipment
【24h】

Deep learning for site safety: Real-time detection of personal protective equipment

机译:现场安全深度学习:实时检测个人防护设备

获取原文
获取原文并翻译 | 示例
           

摘要

The leading causes of construction fatalities include traumatic brain injuries (resulted from fall and electrocution) and collisions (resulted from struck by objects). As a preventive step, the U.S. Occupational Safety and Health Administration (OSHA) requires that contractors enforce and monitor appropriate usage of personal protective equipment (PPE) of workers (e.g., hard hat and vest) at all times. This paper presents three deep learning (DL) models built on You-Only-Look-Once (YOLO) architecture to verify PPE compliance of workers; i.e., if a worker is wearing hard hat, vest, or both, from image/video in real-time. In the first approach, the algorithm detects workers, hats, and vests and then, a machine learning model (e.g., neural network and decision tree) verifies if each detected worker is properly wearing hat or vest. In the second approach, the algorithm simultaneously detects individual workers and verifies PPE compliance with a single convolutional neural network (CNN) framework. In the third approach, the algorithm first detects only the workers in the input image which are then cropped and classified by CNN-based classifiers (i.e., VGG-16, ResNet-50, and Xception) according to the presence of PPE attire. All models are trained on an in-house image dataset that is created using crowd-sourcing and web-mining. The dataset, named Pictor-v3, contains similar to 1,500 annotated images and similar to 4,700 instances of workers wearing various combinations of PPE components. It is found that the second approach achieves the best performance, i.e., 72.3% mean average precision (mAP), in real-world settings, and can process 11 frames per second (FPS) on a laptop computer which makes it suitable for real-time detection, as well as a good candidate for running on light-weight mobile devices. The closest alternative in terms of performance (67.93% mAP) is the third approach where VGG-16, ResNet-50, and Xception classifiers are assembled in a Bayesian framework. However, the first approach is the fastest among all and can process 13 FPS with 63.1% mAP. The crowed-sourced Pictor-v3 dataset and all trained models are publicly available to support the design and testing of other innovative applications for monitoring safety compliance, and advancing future research in automation in construction.
机译:造成建筑死亡的主要原因包括颅脑创伤(由于跌落和触电致死)和碰撞(因物体撞击而引起)。作为预防步骤,美国职业安全与健康管理局(OSHA)要求承包商在任何时候都必须强制执行和监视对工人个人防护设备(PPE)的适当使用(例如安全帽和背心)。本文提出了三种基于“仅看一次”(YOLO)架构的深度学习(DL)模型,以验证工作人员的PPE合规性。也就是说,如果工人实时穿着来自图像/视频的安全帽,背心或同时穿这两种衣服。在第一种方法中,算法检测工人,帽子和背心,然后,机器学习模型(例如,神经网络和决策树)将验证每个检测到的工人是否正确地穿着帽子或背心。在第二种方法中,该算法同时检测单个工人并使用单个卷积神经网络(CNN)框架验证PPE的依从性。在第三种方法中,该算法首先仅检测输入图像中的工作人员,然后根据基于PPE服装的存在情况,对这些工作人员进行基于CNN的分类器(即VGG-16,ResNet-50和Xception)的裁剪和分类。所有模型都在使用众包和网络挖掘创建的内部图像数据集中进行训练。名为Pictor-v3的数据集包含约1,500个带批注的图像和约4,700个穿着各种PPE组件组合的工人实例。我们发现,第二种方法在实际设置中可获得最佳性能,即72.3%的平均平均精度(mAP),并且可以在便携式计算机上每秒处理11帧(FPS),因此非常适合用于时间检测,以及在轻量级移动设备上运行的理想选择。就性能而言,最接近的替代方法(mAP为67.93%)是在贝叶斯框架中组装VGG-16,ResNet-50和Xception分类器的第三种方法。但是,第一种方法是所有方法中最快的,并且可以以63.1%的mAP处理13 FPS。众筹的Pictor-v3数据集和所有经过训练的模型可公开获得,以支持其他创新应用的设计和测试,以监控安全合规性,并推动未来在建筑自动化中的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号