...
首页> 外文期刊>IEEE transactions on audio, speech and language processing >Linearly Constrained Minimum Variance Source Localization and Spectral Estimation
【24h】

Linearly Constrained Minimum Variance Source Localization and Spectral Estimation

机译:线性约束最小方差源定位和谱估计

获取原文
获取原文并翻译 | 示例

摘要

A signal's spectrum is a representation of the signal in terms of elementary basis functions which facilitates the extraction of desired information. For a temporal signal, the spectrum is one-dimensional and expresses the time-domain signal as a linear combination of sinusoidal basis functions. A space-time signal possesses a multidimensional Fourier transform known as the wavenumber-frequency spectrum, which represents the space-time signal as a weighted summation of monochromatic plane waves. The spatial and temporal frequencies are not separable, as spatial frequency is itself a function of the temporal frequency. Thus, it seems natural to analyze and estimate the spatial and temporal frequency components in tandem. It is therefore surprising that conventional spectral estimation methods focus on either the spatial or temporal dimension, without any regard for the other. Spatial spectral estimation is commonly referred to as source localization, as the direction of the wavenumber vector is indeed the direction of propagation. Conventional methods analyze a solely spatial aperture without accounting for the temporal structure of the desired signal. Conversely, temporal spectral estimation is performed using a single sensor, and thus the signal aperture is purely temporal. This paper proposes a spatiotemporal framework for spectral estimation based on the linearly constrained minimum variance (LCMV) beamforming method proposed by Frost in 1972. The aperture consists of an array of sensors, each storing a set of previous temporal samples. It is first shown that by taking into account the temporal structure of the desired signal, the ensuing source location estimate is more robust to the effects of noise and reverberation. Unlike conventional localizers, the LCMV steered beam temporally focuses the array onto the desired signal. The desired signal is modeled by an autoregressive (AR) process, and the resulting AR coefficients are embedded in the linear const-n-nraints. As a result, the rate of anomalous estimates is significantly reduced as compared to existing techniques. Moreover, it is then demonstrated that by employing multiple sensors and steering the array to the assumed source location, the estimate of the desired signal's temporal spectrum contains a lesser contribution from the unwanted noise and reverberation.
机译:信号频谱是根据基本函数的信号表示,它有助于提取所需的信息。对于时间信号,频谱是一维的,并将时域信号表示为正弦基函数的线性组合。时空信号具有多维傅里叶变换,称为波数-频谱,它表示时空信号为单色平面波的加权总和。空间频率和时间频率不可分离,因为空间频率本身是时间频率的函数。因此,似乎自然而然地分析和估计了时空频率分量。因此令人惊讶的是,常规频谱估计方法集中于空间或时间维度,而没有任何其他方面的考虑。空间光谱估计通常称为源定位,因为波数矢量的方向确实是传播方向。传统方法仅分析空间孔径,而不考虑所需信号的时间结构。相反,使用单个传感器执行时间频谱估计,因此信号孔径纯粹是时间上的。本文基于Frost于1972年提出的线性约束最小方差(LCMV)波束成形方法,提出了一种时空光谱估计框架。孔径由传感器阵列组成,每个传感器阵列存储一组先前的时间样本。首先显示出,通过考虑所需信号的时间结构,随后的源位置估计对于噪声和混响的影响更加鲁棒。与传统的定位器不同,LCMV转向光束将阵列暂时聚焦到所需信号上。通过自回归(AR)过程对所需信号进行建模,并将所得的AR系数嵌入线性const-n根中。结果,与现有技术相比,异常估计率显着降低。而且,然后证明,通过使用多个传感器并将阵列转向到假定的源位置,所需信号的时间频谱的估计包含来自不想要的噪声和混响的较小贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号